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                    Abstract
In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain.
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                    Notes
	This question has been raised as the “interpretation problem”; however, this label has been used too broadly and inconsistently to admit of a single solution. Some commentators use it to broach the question addressed here—why do DCNNs succeed where other neural network architectures struggle—while others use it to raise other questions, such as semantic interpretability or decision justification.


	Some residual problems may be extracted from the critiques, however, especially regarding the biological plausibility of the procedures used to train DCNNs. I address these residual concerns in the final section.


	For prominent empiricist nodes in the current debate, see (Botvinick et al. 2017; McClelland et al. 2010).


	Even three-layer perceptrons have been trained to categorize triangle exemplars with a high degree of accuracy (Spasojević et al. 2012).


	This is but the barest gloss on a rich research area in the foundations of logic and math going back to Hilbert—for a recent overview, see Antonelli (2010).


	Achille and Soatto (2017) have recently argued that implicit or explicit regularization is a fourth crucially important feature in generalizing DCNN performance (to prevent them from simply memorizing the mapping for every exemplar in the training set), but since there is significant diversity in regularization procedures and this idea is more preliminary, I do not discuss it further here.


	In the interests of space, we move quickly over the history here; for more background and discussion, see (Buckner and Garson 2018; Schmidhuber 2015).


	Note that some functionalists (i.e. Weiskopf 2011a, b) defend the explanatory power of idealized models and so may not think much is gained by restricting DCNNs to more biologically-plausible values (though for rebuttal from a more mechanistic perspective, see Buckner 2015).


	Note that when DCNNs are deployed for categorization or other forms of decision-making, the final layer of the network will typically be a fully-connected classifier that takes input from all late-stage nodes (i.e. a fully connected layer of nodes or set of category-specific support-vector machines). These are used to draw the boundaries between the different category manifolds in the transformed similarity space. Since these components are deployed in many other machine learning methods that do not model transformational abstraction, I do not discuss them further here.


	An important current point of controversy is whether specifically max-pooling is required to reduce the search space and avoid overfitting, or whether other downsampling methods might be as effective. For two poles in this debate, see (Patel et al. 2016; Springenberg et al. 2014). The present paper holds that even if alternative solutions are also practically effective, biologically-relevant networks must somehow implement the aggregative role of complex cells—though max-pooling is perhaps only one possible technique in a family of downsampling operations that could accomplish this (DiCarlo and Cox 2007).


	For some early empirical support for this view, see Achille and Soatto (2017).


	For a worked example, see Goodfellow et al. (2016, p. 334), who show that edge detection alone can be roughly 60,000 times more computationally efficient when performed by a DCNN, compared to a traditional 3-layer perceptron.


	One could also worry here that AlphaGo did not learn the rules of Go from experience, but this does not impugn the point. What is claimed is rather that once these rules were provided, a DCNN can learn strategies without any domain-specific strategy heuristics (which knowledge of the rules do not provide). This is especially driven home by AlphaGo Zero, which acquired strategies entirely through self-play (Silver et al. 2017).


	Interestingly, the DeepArt team found that average-pooling was more effective than max-pooling when the network was in generation mode.


	This general characterization washes across differences in various canonical accounts of mechanism; see (Bechtel and Abrahamsen 2005; Glennan 2002; Machamer et al. 2000).


	A likelier critical outcome is that both DCNNs and mammalian neocortex are members of the LN generic mechanism family, but there are other members in this family besides DCNNs that provide a tighter fit in performance and structure to humans. For example, while a more recent study by DiCarlo and co-authors confirmed that DCNNs predict many low-resolution patterns in human perceptual similarity judgments and do so using the same sorts of features that are found in late-stage ventral stream processing in V4/5 and IT, they found that these models were not as predictive of high-resolution, image-by-image comparisons in humans as were rhesus monkeys (Rajalingham et al. 2018). They speculate that an alternative but nearby subfamily of models that tweaks one or more typical features of DCNNs—i.e. their diet of training on static images, or lack of recurrent connections between layers—might provide an even better mechanistic model of human perceptual similarity and categorization judgments without unduly complicating the model. However, whether this prospect will pay off—and do so without inhibiting the ability of DCNNs to generalize to non-primate species—remains an open empirical question, and DCNNs remain the most successful mechanistic model of primate visual perception that we have to date.
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