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                    Abstract
A probability function is non-conglomerable just in case there is some proposition E and partition \(\pi \) of the space of possible outcomes such that the probability of E conditional on any member of \(\pi \) is bounded by two values yet the unconditional probability of E is not bounded by those values. The paradox of non-conglomerability is the counterintuitive—and controversial—claim that a rational agent’s subjective probability function can be non-conglomerable. In this paper, I present a qualitative analogue of the paradox. I show that, under antecedently plausible assumptions, an analogue of the paradox arises for rational comparative confidence. As I show, the qualitative paradox raises its own distinctive set of philosophical issues.
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	I provide a more precise definition in Sect. 2.


	I discuss the connection between non-conglomerability and “proof by cases” further in Sect. 4.3.


	More precisely, it is uncontroversial that the Kolmogorov axiomatization—when formulated to allow for infinite probability spaces—permits their existence. See de Finetti (1930), Kadane et al. (1986), and Arntzenius et al. (2004) for various examples of non-conglomerable probability functions. Jaynes (2003), who denies the legitimacy of infinite probability spaces, is a notable denier of the existence of non-conglomerable probability functions.


	So called by de Finetti (1972).


	See de Finetti (1972), Hill (1980), Kadane et al. (1986), and Arntzenius et al. (2004).


	See Jaynes (2003), Easwaran (2008, 2013a), Pruss (2012), and the responses of Dickey, Fraser, and Lindley in Hill (1980).


	I do not assume that P is countably additive. However, I discuss the connection between countable additivity and conglomerability in Sect. 6.3.


	The above constraints constitute the theory of conditional probability due to de Finetti (1974) and Dubins (1975). Although the last “multiplicative” constraint is not part of Kolmogorov (1950)’s familiar axiomatization, it is a generalization of his ratio formula for conditional probability, according to which \(P(A|B) = P(A \cap B)/P(B)\) when \(P(B) > 0\). The multiplicative constraint applies even when \(P(B) = 0\) and, as noted by Easwaran (2014), is implied by various other theories of conditional probability that allow for P(A|B) to be defined when \(P(B) = 0\). However, the theory of conditional probability in question—and which I will assume in what follows—differs from that developed by Kolmogorov (ibid., Chap. 5). See Seidenfeld et al. (2013) for a comparison between the two theories.


	See de Finetti (1972, p. 99).


	As de Finetti (1972, pp. 98–99) notes, the example is attributed to Lévy by Cantelli (1935), though it is based on a still earlier example of de Finetti (1930). See Kadane et al. (1986) and Arntzenius et al. (2004) for additional examples.


	That is, for any Boolean algebra \(\mathcal {F}'\) on \(\Omega \) containing every \(V_i\), every \(H_j\), and A: for all \(x \in \mathcal {F}\), \(x \in \mathcal {F'}\) as well.


	
                        Proof. Suppose for reductio that \(P(V_i) > 0\) for some \(i \in \mathbb {N}\). Then, because P is real-valued, there is some positive integer N such that \(P(V_i) > \frac{1}{N}\). Thus, by finite additivity and the assumption that \(L_1\) is fair by the lights of P, \(P(V_1 \cup \cdots \cup V_{N+1}) = (N+1)P(V_i) > 1 + \frac{1}{N}\), which exceeds 1—in violation of the axioms of probability. A similar story holds for every \(P(H_j)\).


	Although the traditional “factorization” analysis takes A and B to be probabilistically independent just in case \(P(A \cap B) = P(A)P(B)\), Fitelson and Hájek (2014) have forcefully argued that it is more appropriate to regard A and B as (mutually) probabilistically independent just in case \(P(A|B) = P(A)\) and \(P(B|A) = P(B)\). Note that, by the 4th constraint in the definition of conditional probability, these latter claims entail that \(P(A \cap B) = P(A)P(B)\).


	In general, these constraints imply that \(P[(A \cap B)|B] = P(A|B)P(B|B) = P(A|B)\). Thus, \(P[(V_i \cap H_1)|V_i] = P(H_1|V_i), \ldots , P[(V_i \cap H_{i-1})|V_i] = P(H_{i-1}|V_i)\).


	In Sect. 6, I discuss common responses to the quantitative paradox as they relate to possible responses to the qualitative paradox.


	Comparative confidence is also sometimes understood as the attitude of being strictly more confident in one proposition than another. However, taking comparative confidence to be the “at least as confident” attitude will simplify the ensuing discussion. Also, the terms ‘comparative confidence’, ‘qualitative probability’, and ‘comparative probability’ are often used interchangeably in the literature.


	See Foley (2009).


	Although it may no longer be so widespread, the view that comparative confidence is somehow more fundamental than credence was held by a number of notable authors in the history of probability, including Keynes (1921), de Finetti (1937), and Savage (1954). See Stefánsson (2016) for a contemporary defense of the view. See Eriksson and Hájek (2007) for a defense of the view that ‘credence’ is a primitive concept.


	See de Finetti (1937), Savage (1954), and Scott (1964) for notable representation theorems connecting comparative unconditional confidence to unconditional probability. See Koopman (1940a) and Suppes and Zanotti (1982) for notable representation theorems connecting comparative conditional confidence to conditional probability.


	See Krantz et al. (1971, pp. 221–222) for general discussion of similarities among Koopman’s axiomatization and other axiomatizations. More specifically, see Luce (1968, pp. 483–484) for discussion of logical connections among his own axioms and Koopman’s axioms. Additionally, the axiomatization of Hawthorne (2016) is nearly identical to that of Koopman.


	Although Koopman does not speak in terms of ‘epistemic possibilities’, this terminology will be useful in what follows.


	Koopman actually states two axioms of composition; the other is analogous.


	Koopman actually states four axioms of decomposition; the others are analogous.


	This axiom ensures that any rational comparative conditional confidence relation is conglomerable in any finite partition (in the sense I describe in Sect. 3.3). In Sect. 4, I describe a comparative conditional confidence relation that satisfies Koopman’s axioms but is non-conglomerable in some infinite partition. As it turns out, none of my argument will appeal to this axiom. However, I include it here for completeness.


	As Koopman (1940b) notes, both Alternative presumption and Subdivision are entailed by the other axioms along with the assumption that \(\succeq \) is complete—that is, that \(p|q \succeq r|s\) or \(r|s \succeq p|q\). However, I will not assume that \(\succeq \) is complete in what follows.


	This is a straightforward consequence of Koopman’s Theorem 3, the first part of which states that if \((a \cap h) \subseteq (b \cap h)\), then \(b|h \succeq a|h\). His proof employs Verified Contingency, Implication, Reflexivity, Antisymmetry, and Composition. To establish that \((p \cap q)|q \succeq p|q\), it suffices to set \(a = p, b = p \cap q\), and \(h = q\) in the theorem. To establish that \(p|q \succeq (p \cap q)|q\), it suffices to set \(a = p \cap q, b = p\), and \(h = q\).


	This is the first part of Koopman’s Theorem 4. His proof employs Verified Contingency, Implication, Reflexivity, Antisymmetry, and Composition.


	This is Koopman’s Definition 1.


	This is Koopman’s Assumption (stated separately from his axioms).


	This is proven as Koopman’s Theorem 14. His proof employs Verified Contingency, Antisymmetry, Composition, Decomposition, Subdivision, and Assumption.


	
                                Independence employs the notion of independence for comparative conditional confidence described by Krantz et al. (1971, p. 238) .


	Strictly speaking, this inference rule results from applying the deduction theorem to what is ordinarily called “proof by cases”. However, this inference rule will be more relevant than the latter in what follows.


	
                                    Confidence by Cases is a special case of Koopman’s axiom of Alternative Presumption However, I have renamed the latter for illustrative purposes.


	
                            Proof We saw that \(\succeq \) is non-conglomerable in at least one of \(\pi _1\) and \(\pi _2\). Suppose that \(\succeq \) is non-conglomerable in \(\pi _1\). Then, it is not the case that \(q_{1,1}|q_{1,1} \succeq A|\Omega \succeq q_{1,1}|(q_{1,1} \cup q_{1,2})\). However, by Reflexivity, \(q_{1,1}|q_{1,1} \succeq A|\Omega \). Hence, \(A|\Omega \not \succeq q_{1,1}|(q_{1,1} \cup q_{1,2})\). That is, \(A|\Omega \not \succeq r|s\). Since \(\Omega = (V_1 \cup V_2 \cup \cdots )\), it follows that \(A|(V_1 \cup V_2 \cup \cdots ) \not \succeq r|s\). Next, suppose that \(\succeq \) is non-conglomerable in \(\pi _2\). Then, it is not the case that \(q_{1,1}|(q_{1,1} \cup q_{1,2} \cup q_{1,3}) \succeq A|\Omega \succeq \lnot q_{1,1}|q_{1,1}\). By Verified Contingency, \(q_{1,1}|q_{1,1} \succeq \lnot A|\Omega \). So, by Antisymmetry, \(A|\Omega \succeq \lnot q_{1,1}|q_{1,1}\). Hence, it is not the case that \(q_{1,1}|(q_{1,1} \cup q_{1,2} \cup q_{1,3}) \succeq A|\Omega \). That is, \(r|t \not \succeq A|\Omega \). Since \(\Omega = (H_1 \cup H_2 \cup \cdots )\), it follows that \(r|t \not \succeq A|(H_1 \cup H_2 \cup \cdots )\).


	Although de Finetti (1972, p. 104) only considered probabilistic non-conglomerability to be in superficial—but not actual—violation of deductive logic as well, it should be remembered that his view of probability was deeply operationalist. Famously, de Finetti held that all statements of probability were to be understood ultimately in terms of betting ratios. Hence, from an operationalist perspective, probabilistic non-conglomerability may not appear so odd because its consequences for betting behavior do not so saliently violate analogues of deductive logic. By contrast, qualitative non-conglomerability involves real doxastic attitudes that violate a clear epistemic analogue of a deductive inference rule. Thus, qualitative non-conglomerability is apt to appear more odd than de Finetti thought probabilistic non-conglomerability to be. Probabilistic non-conglomerability may similarly appear more odd under less operationalist, more realist interpretations of subjective probability.


	Here, and throughout Sect. 5, I use the term ‘rational comparative confidence relation’ to denote any comparative confidence relation that satisfies Koopman’s axioms. In Sect. 6, I discuss the question of whether the non-conglomerable comparative confidence relation of Sect. 4 is indeed rationally permissible.


	This claim is a straightforward consequence of Theorem 3 in Koopman (1940a), the second part of which states that if \((a \cap h)\) is a proper subset of \((b \cap h)\), then \(b|h \succ a|h\). Note that \((V_1 \cap \Omega )\) is a proper subset of \((V_1 \cup V_2) \cap \Omega \). Thus, setting \(a = V_1, b=(V_1 \cup V_2)\), and \(h = \Omega \) yields that \((V_1 \cup V_2)|\Omega \succ V_1|\Omega \).


	Although I only explicitly appealed to the fact that \(P(A) \ne 0\) or \(P(A) \ne 1\) to show that P is non-conglomerable, the assumption that A is in the algebra on which P is defined ensures that \(P(A) < 1\) or \(P(A) > 0\).


	I show here that \(A|V_i \not \succeq q_{1,1}|q_{1,1}\) for any rational comparative confidence relation \(\succeq \). First, by Verified Contingency, \(q_{1,1}|q_{1,1} \succeq V_i|V_i\). Next, note that \((A \cap V_i)\) is a proper subset of \((V_i \cap V_i)\). So, by the aforementioned Theorem 3 in Koopman (1940a), \(V_i|V_i \succ A|V_i\). Thus, by Transitivity, \(q_{1,1}|q_{1,1} \succ A|V_i\). Hence, \(A|V_i \not \succeq q_{1,1}|q_{1,1}\).


	By Lemma 2, \(\{q_{1,1}, q_{1,2}\}\) and \(\{q_{1,1}, q_{1,2}, q_{1,3}\}\) are a 2-scale and a 3-scale, respectively. So, \(q_{1,1}|(q_{1,1} \cup q_{1,2}) \approx q_{1,2}|(q_{1,1} \cup q_{1,2})\) and \(q_{1,1}|(q_{1,1} \cup q_{1,2} \cup q_{1,3}) \approx q_{1,2}|(q_{1,1} \cup q_{1,2} \cup q_{1,3}) \approx q_{1,3}|(q_{1,1} \cup q_{1,2} \cup q_{1,3})\). Additionally, by finite additivity and the fact that \(\succeq \) is almost representable by P, it follows that \(P[q_{1,1}|(q_{1,1} \cup q_{1,2})] = P[q_{1,2}|(q_{1,1} \cup q_{1,2})] = \frac{1}{2}\) and \(P[q_{1,1}|(q_{1,1} \cup q_{1,2} \cup q_{1,3})] = P[q_{1,2}|(q_{1,1} \cup q_{1,2} \cup q_{1,3})] = P[q_{1,3}|(q_{1,1} \cup q_{1,2} \cup q_{1,3})] = \frac{1}{3}\).


	
Pruss (2014) already observes that any such probability function is non-conglomerable. However, while his observation draws on specific mathematical properties of such functions, the route provided here illustrates the representational necessity of this fact.


	
Pruss (2014) levels this criticism, among others.


	As I remarked in Sect. 4.2, Independence is not necessary to generate the paradox.


	Additional authors who accept the quantitative paradox include Hill (1980), Kadane et al. (1986), and Arntzenius et al. (2004).


	As I said in footnote 24, the argument appeals to all of Koopman’s axioms except for Alternative Presumption.
                        


	See Fishburn (1986) for discussion.


	See Bartha (2004) for discussion.


	Because \(P(V_i) = 0\) for every positive integer i, \(P(V_1) + P(V_2) + \cdots = 0 + 0 + \cdots = 0\). However, \(P(\Omega ) = P(V_1 \cup V_2 \cup \cdots ) = 1\). So, \(P(V_1 \cup V_2 \cup \cdots ) \ne P(V_1) + P(V_2) + \cdots \)
                        


	
                                                    \(A, B, A_1, A_2, \ldots \) are arbitrary propositions in the algebra \(\mathcal {F}\) on which \(\succeq \) is defined. I follow the formulation of Fishburn (1986, p. 342), who allows \(\mathcal {F}\) to be an arbitrary Boolean algebra (not necessarily a \(\sigma \)-algebra, as in the original formulation of Villegas).


	
Chateauneuf and Jaffray (1984) show that a necessary and sufficient condition for \(\succeq \) to be representable by a countably additive probability function is that \(\succeq \) satisfies Monotone Continuity as well as a particular “Archimedean” condition. At the time of this writing, it does not appear to be known what necessary and sufficient conditions may be given under which \(\succeq \) is almost representable by a countably additive probability function. However, see Chuaqui and Malitz (1983) and Schwarze (1989) for results—all of which involve Monotone Continuity—in this direction.


	I adapt the paraphrase of Fishburn (1986, pp. 342–343) here.


	In what follows, I will take ‘\(C \succeq D\)’ to mean that \(C|\Omega \succeq D|\Omega \).


	First, \(A_1 \subseteq A_2 \subseteq \cdots \) because \(V_1 \subseteq (V_1 \cup V_2) \subseteq \cdots \) Next, let i, j be arbitrary positive integers. By Fairness, \(V_i|\Omega \approx V_j|\Omega \). So, \(V_1|\Omega \approx V_2|\Omega , \ldots , V_{i+1}|\Omega \approx V_{i+2}|\Omega \). Next, by a straightforward application of Theorem 6 of Koopman (1940a), it follows that \((V_1 \cup \ldots \cup V_{i+1})|\Omega \approx (V_2 \cup \cdots \cup V_{i+2})|\Omega \). Additionally, note that \(B = \Omega - A_1 = \Omega - V_1 = (V_2 \cup V_3 \cup \cdots )\). So, \((V_2 \cup \cdots \cup V_{i+2}) \subseteq B\). Hence, by the aforementioned Theorem 3 of Koopman (1940a), \(B|\Omega \succeq (V_2 \cup \cdots \cup V_{i+2})|\Omega \). Finally, since \(A_{i+1} = (V_1 \cup \cdots \cup V_{i+1})\), \(A_{i+1}|\Omega \approx (V_2 \cup \cdots \cup V_{i+2})|\Omega \). By Transitivity, \(B|\Omega \succeq A_{i+1}|\Omega \). For similar reasons, \(B|\Omega \succeq A_1|\Omega \). Hence, \(B|\Omega \succeq A_i|\Omega \). That is, \(B \succeq A_i\).


	Note that, since \(V_1 \cap V_i = \emptyset \) for all \(i>1\), \(B = (V_2 \cup V_3 \cup \ldots )\) is a proper subset of \(A = (V_1 \cup V_2 \cup \ldots )\). So, the aforementioned Theorem 3 of Koopman (1940a) entails that \(A|\Omega \succ B|\Omega \). Hence, \(B \not \succeq A\).


	See de Finetti (1972), Bartha (2004), Howson (2008), and Easwaran (2013b).


	For example, Fishburn (1986), in a comprehensive literature review on axioms of comparative probability, merely remarks that “Monotone continuity is quite appealing” (343). Similarly, Fine (1973) only says, “Unlike (other axioms of comparative probability), we are inclined to view (monotone continuity) as attractive but not necessary for a characterization of (comparative probability)” (21). However, both authors discuss relevant representation theorems at length.


	See de Finetti (1972, pp. 91–92), who argues that the intuitive plausibility of the possibility of a probabilistically fair, countably infinite lottery is a reason to reject countable additivity.


	See Icard (2016), who provides a pragmatic argument for other constraints on comparative confidence.


	See Fitelson and McCarthy (2014), who generalize Joyce (1998, 2009)’s epistemic arguments for probabilism to justify other constraints on comparative confidence.


	For example, Easwaran (2013b, Sect. 2) provides an argument for countable additivity that is neither “pragmatic” nor “epistemic”. Can Easwaran’s argument can be reformulated as an argument for Monotone Continuity?


	Although Jaynes never uses the term ‘probabilistic finitism’, it is clear that he is some kind of finitist about probability: “In our view, an infinite set cannot be said to possess any ‘existence’ and mathematical properties at all—at least, in probability theory—until we have specified the limiting process that is to generate it from a finite set. In other words, we sail under the banner of Gauss, Kronecker, and Poincaré rather than Cantor, Hilbert, and Bourbaki” (ibid., xxii).


	More precisely, let X be a countably infinite set of propositions, \(a = (a_1, a_2, \ldots )\) a countably infinite sequence of finite sets of propositions, and P a probability function on the members of a. Then, X has probability p relative to a just in case \(X = \bigcup _n a_n\) and \(p = \lim _{n \rightarrow \infty } P(a_n)\). Similarly for uncountably infinite sets.


	This conjecture is further suggested by the result of Seidenfeld et al. (2013), who generalize the notion of countable additivity to \(\kappa \)-additivity for any infinite cardinality \(\kappa \). They show that, if a probability function P fails to be \(\kappa \)-additive for some uncountable \(\kappa \) (but satisfies particular structural constraints), then P is non-conglomerable in a partition of cardinality \(\kappa \). Hence, insofar as Monotone Continuity with respect to \(\kappa \)-sized sequences of monotone non-decreasing propositions is a qualitative counterpart of \(\kappa \)-additivity—another open question in itself—some form of this conjecture is all the more reasonable.
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Appendix
Appendix
In this Appendix, I show that the non-conglomerable comparative confidence relation \(\succeq \) of Sect. 4 is almost representable by de Finetti’s non-conglomerable probability function P of Sect. 2. That is, I show:

                    
                            Almost Representability If \(A|B \succeq C|D\), then \(P(A|B) \ge P(C|D)\).

                  

Note that the only constraints on \(\succeq \) are Koopman’s axioms, Fairness, and Independence. So, we must show that P satisfies suitable probabilistic analogues of them. For example, since \(k|k \succeq a|h\) by Verified Contingency, we must show that \(P(k|k) \ge P(a|h)\). Similarly, since \(V_i|\Omega \approx V_k|\Omega \) by Fairness, we must show that \(P(V_i|\Omega ) = P(V_k|\Omega )\)—i.e., that \(P(V_i) = P(V_k)\).
I begin with Koopman’s axioms. Because I will not yet appeal to any properties of P beyond its satisfying constraints (1)–(4) from Sect. 2—I will not even appeal to the fact that P is real-valued—it will follow that any conditional probability function satisfying those conditions also satisfies the relevant probabilistic analogues of Koopman’s axioms. Thus, any conditional probability function—real-valued or extended-valued—can almost represent some comparative confidence relation that satisfies Koopman’s axioms.
	
                      1.
                      
                        
                                    Verified Contingency Recall that \(P[(A \cap B)|B] = P(A|B)\) (cf. footnote 14). So, \(P(a|h) = P[(a \cap h)|h]\) and \(P(\lnot a|h) = P[(\lnot a \cap h)|h]\). By finite additivity and constraint (2), \(P(a|h) + P(\lnot a|h) = P[(a \cap h)|h] + P[(\lnot a \cap h)|h] = P(h|h) = 1\). Since \(P(\lnot a|h) \ge 0\), it follows that \(P(a|h) \le 1\). Thus, since \(P(k|k) = 1\), \(P(k|k) \ge P(a|h)\).

                      
                    
	
                      2.
                      
                        
                                    Implication Suppose \(a|h \succeq k|k\), so that \(h \subseteq a\). Then \(a = (h \cup h')\) for some \(h' \in \mathcal {F}\) such that \(h \cap h' = \emptyset \). So, by finite additivity, \(P(a|h) = P[(h \cup h')|h] = P(h|h) + P(h'|h) = 1 + P(h'|h) \ge 1 = P(k|k)\), as desired.

                      
                    
	
                      3.
                      
                        
                                    Reflexivity Obviously, \(P(a|h) \ge P(a|h)\).

                      
                    
	
                      4.
                      
                        
                                    Transitivity Suppose that \(P(c|l) \ge P(b|k)\) and \(P(b|k) \ge P(a|h)\). Obviously, \(P(c|l) \ge P(a|h)\).

                      
                    
	
                      5.
                      
                        
                                    Antisymmetry Suppose that \(P(b|k) \ge P(a|h)\). Then, as above, \(P(b|k) + P(\lnot b|k) = P[(b \cap k)|k] + P[(\lnot b \cap k)|k] = P(k|k) = 1\). Similarly, \(P(a|h) + P(\lnot a|h) = 1\). Thus, \(P(\lnot a|h) = 1 - P(a|h) \ge 1 - P(b|k) = P(\lnot b|k)\), as desired.

                      
                    
	
                      6.
                      
                        
                          Composition
                        

                        Suppose:
	
                              (a)
                              
                                
                                                    \((a_1 \cap b_1) \cap h_1 \ne \emptyset \) and \((a_2 \cap b_2) \cap h_2 \ne \emptyset \).

                              
                            
	
                              (b)
                              
                                
                                                    \(P(a_2|h_2) \ge P(a_1|h_1)\).

                              
                            
	
                              (c)
                              
                                
                                                    \(P[b_2|(a_2 \cap h_2)] \ge P[b_1|(a_1 \cap h_2)]\).

                              
                            

 By constraint (4), \(P[(a_2 \cap b_2)|h_2] = P[b_2|(a_2 \cap h_2)]P(a_2|h_2)\) and \(P[(a_1 \cap b_1)|h_1] = P[b_1|(a_1 \cap h_1)]P(a_1|h_1)\). Thus, by (b) and (c), \(P[(a_2 \cap b_2)|h_2] \ge P[(a_1 \cap b_1)|h_1]\).

                      
                    
	
                      7.
                      
                        
                          Decomposition
                        

                        Suppose:
	
                              (a)
                              
                                
                                                    \((a_1 \cap b_1) \cap h_1 \ne \emptyset \) and \((a_2 \cap b_2) \cap h_2 \ne \emptyset \).

                              
                            
	
                              (b)
                              
                                
                                                    \(P(a_1|h_1) \ge P(a_2|h_2)\).

                              
                            
	
                              (c)
                              
                                
                                                    \(P[(a_2 \cap b_2)|h_2] \ge P[(a_1 \cap b_1)|h_1]\).

                              
                            

 As above, \(P[(a_2 \cap b_2)|h_2] = P[b_2|(a_2 \cap h_2)]P(a_2|h_2)\) and \(P[(a_1 \cap b_1)|h_1] = P[b_1|(a_1 \cap h_1)]P(a_1|h_1)\). Thus, by (b) and (c), it follows that \(P[b_2|(a_2 \cap h_2)] \ge P[b_1|(a_1 \cap h_1)]\).

                      
                    
	
                      8.
                      
                        
                                    Alternative Presumption Suppose \(P(r|s) \ge P[a|(b \cap h)]\) and \(P(r|s) \ge P[a|(\lnot b \cap h)]\). By constraint (4), \(P[(a \cap b)|h] = P[a|(b \cap h)]P(b|h)\) and \(P[(a \cap \lnot b)|h] = P[a|(\lnot b \cap h)]P(\lnot b|h)\). So, by finite additivity, \(P[(a \cap b)|h] + P[(a \cap \lnot b)|h] = P(a|h)\). Using finite additivity again, 
$$\begin{aligned} P(a|h)= & {} P[a|(b \cap h)]P(b|h) + P[a|(\lnot b \cap h)]P(\lnot b|h) \end{aligned}$$

                    (32)
                


$$\begin{aligned}= & {} P[a|(b \cap h)]P(b|h) + P[a|(\lnot b \cap h)][1-P(b|h)] \end{aligned}$$

                    (33)
                


$$\begin{aligned}\le & {} P(r|s)P(b|h) + P(r|s)[1 - P(b|h)] \end{aligned}$$

                    (34)
                


$$\begin{aligned}= & {} P(r|s), \end{aligned}$$

                    (35)
                

 as desired.

                      
                    
	
                      9.
                      
                        
                          Subdivision
                        

                        Suppose the propositions \(a_1, \ldots , a_n, b_1, \ldots , b_n\) are such that:
	
                              (a)
                              
                                
                                                    \(a_i \cap a_j = b_i \cap b_j = \emptyset \) for all \(i, j = 1, \ldots , n\) such that \(i \ne j\).

                              
                            
	
                              (b)
                              
                                
                                                    \(a = (a_1 \cup \ldots \cup a_n) \ne \emptyset \) and \(b = (b_1 \cup \ldots \cup b_n) \ne \emptyset \).

                              
                            
	
                              (c)
                              
                                
                                                    \(P(a_n|a) \ge \ldots \ge P(a_1|a)\) and \(P(b_n) \ge \ldots \ge P(b_1|b)\).

                              
                            

 Since finite additivity entails that \(P(a_1|a) + \ldots + P(a_n|a) = P(a|a) = 1\), it follows from (c) that \(P(a_1|a) \le \frac{1}{n}\). For the same reason, \(P(b_1|b) \le \frac{1}{n}\). Since \(P(b_n|b) \ge P(b_1|b)\), it follows that \(P(b_n|b) \ge \frac{1}{n} \ge P(a_1|a)\).

                      
                    


                    Fairness and Independence place stricter requirements on almost representability than Koopman’s axioms in that not every conditional probability function satisfies their probabilistic analogues. Nonetheless, it is easy to see that P does. In particular, by definition of P:
	
                      
                                Probabilistic Fairness For every \(i, j \in \mathbb {N}\): \(P(V_i) = P(V_j)\) and \(P(H_i) = P(H_j)\).

                    
	
                      
                                Probabilistic Independence For every \(i, j \in \mathbb {N}\): \(P(H_j|V_i) = P(H_j)\) and \(P(V_i|H_j) = P(V_i)\).

                    

Since P satisfies probabilistic analogues of Koopman’s axioms, Fairness, and Independence, it follows that \(\succeq \) is almost representable by P.
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