Skip to main content
Log in

A persistence enhancing propensity account of ecological function to explain ecosystem evolution

  • S.I. : Teleological Organisation
  • Published:
Synthese Aims and scope Submit manuscript

Abstract

We argue that ecology in general and biodiversity and ecosystem function (BEF) research in particular need an understanding of functions which is both ahistorical and evolutionarily grounded. A natural candidate in this context is Bigelow and Pargetter’s (1987) evolutionary forward-looking account which, like the causal role account, assigns functions to parts of integrated systems regardless of their past history, but supplements this with an evolutionary dimension that relates functions to their bearers’ ability to thrive and perpetuate themselves. While Bigelow and Pargetter’s account focused on functional organization at the level of organisms, we argue that such an account can be extended to functional organization at the community and ecosystem levels in a way that broadens the scope of the reconciliation between ecosystem ecology and evolutionary biology envisioned by many BEF researchers (e.g. Holt 1995; Loreau 2010a). By linking an evolutionary forward-looking account of functions to the persistence-based understanding of evolution defended by Bouchard (2008, 2011) and others (e.g. Bourrat 2014; Doolittle 2014), and to the theoretical research on complex adaptive systems (Levin 1999, 2005; Norberg 2004), we argue that ecosystems, by forming more or less resilient assemblages, can evolve even while they do not reproduce and form lineages. We thus propose a Persistence Enhancing Propensity (PEP) account of role functions in ecology to account for this overlap of evolutionary and ecological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See Cummins (1975, p. 753) for his initial formulation of the CR theory.

  2. As an anonymous referee recalled, Davies ’s (2001, Chap. 4) discussion does significant work at easing the worry of excessive liberality attached to the CR account, by restricting its application to hierarchically-organized systems. Despite this, however, Davies’s reinterpretation of the CR theory would, it seems, still admit the functional ascriptions, criticized in the above paragraph, to ecological items relative to ecosystem fragilization or collapse. This, at least, is suggested by Davies’s willingness to assign to the “unwieldy tusk of the narwhal whale” the function of reducing the animal’s mobility, despite the presumable fact that such reduced mobility is detrimental to its survival (Davies takes this example from Matthen 1988). Hence, Davies’s revised CR account remains more liberal than would seem to be allowed by ecologists’ focus on stability and resilience.

  3. Note, for precision, that on this account of fitness, the mere existence of something, although it is the consequence of past propensity to persist, should not be conflated with a present propensity to persist in the future.

  4. In an earlier paper, Holling (1973) simply uses stability to denote engineering resilience and resilience simpliciter to refer to ecological resilience. Other theorists denote the same distinction through a different terminology, e.g. Loreau (2010b, p. 126; see also Loreau et al. 2002, p. 81) and Pimm (1991, pp. 13–14), use “resilience” for what Holling calls engineering resilience and use respectively “robustness” and “persistence” for what he calls ecological resilience. In line with an anonymous reviewer’s remark, we must point out that the difference between engineering and ecological resilience may be ultimately a matter of time-scale (see, for instance, Beisner et al. (2003, p. 378) for remarks along these lines).

  5. Blandin (2007, pp. 44–46) himself acknowledges, that his and Lamotte’s account rests on a notion of the general trajectory of ecosystems as moving from “Gleasonian” situations where interacting species contingently happen to be compatible but have not yet co-evolved, to “Darwinian” situations where co-evolution has reinforced their interdependence.

  6. An alternative way of doing this, as Godfrey-Smith (2009) suggests, is to see a broad spectrum of individuality where some are in some sense fully-fledged individuals (e.g. some Metazoans) while other individuals are much less fixed and much less formed (e.g. microbial colony) with all the rest of the spectrum occupied by individuals with different degrees of individuality. While there is appeal to this view, we aren’t sure that this shading-off view will be sufficient to account for the complexity and pervasiveness of symbiotic interactions in the biological world.

  7. See Barker (2008) for an extended discussion of the notion of co-optation as it pertains to extended adaptationist research programs, and of the related concept of “biological lever” which she coins to denote cases where an organism co-opts another one by interfering with its regulatory processes. Although space does not allow us to develop on this here, the process of biological leverage should, we think, undoubtedly play a key role in an understanding of ecosystem evolution like ours.

  8. Sterelny (2005, pp. 323–327) characterizes the compensation effect as an emergent top-down effect. We do not here take a stand on emergence and top-down causation in ecology, but see Mikkelson (2004) for an insightful discussion.

  9. The epistemic difficulty identified here is similar to that identified by Amundson and Lauder ’s (1994) objection to the SE theory of functions, on the grounds of the epistemic difficulty of knowing sufficiently the evolutionary history of a trait to know exactly what its selected effects are.

  10. We are thankful to an anonymous referee for noticing this.

References

  • Achinstein, P. (1977). Function statements. Philosophy of Science, 44(3), 341–367.

    Article  Google Scholar 

  • Allen, T. F. H., & Hoekstra, T. W. (1992). Toward a unified ecology. New York: Columbia University Press.

    Google Scholar 

  • Allen, T. F. H., Mitman, G., & Hoekstra, T. W. (1993). Synthesis mid-century: J.T. Curtis and the community concept. In J. S. Fralish, R. P. McIntosh, & O. L. Loucks (Eds.), John T. Curtis: Fifty years of Wisconsin plant ecology (pp. 123–143). Madison: Wisconsin Academy of Sciences, Arts & Letters.

    Google Scholar 

  • Allen, T. F. H., Tainter, J. A., & Hoekstra, T. W. (2003). Supply-side sustainability. New York: Columbia University Press.

  • Amarasekare, P., & Nisbet, R. M. (2001). Spatial heterogeneity, source-sink dynamics, and the local coexistence of competing species. The American Naturalist, 158(6), 572–584. doi:10.1086/323586.

    Google Scholar 

  • Amundson, R., & Lauder, G. V. (1994). Function without purpose. Biology and Philosophy, 9(4), 443–469.

    Article  Google Scholar 

  • Ariew, A., & Lewontin, R. C. (2004). The confusions of fitness. British Journal for the Philosophy of Science, 55(2), 347–363.

    Article  Google Scholar 

  • Bambach, R. K., & Bennington, J. B. (1996). Do communities evolve? A major question in evolutionary paleoecology. In D. Jablonski, D. H. Erwin, & J. H. Lipps (Eds.), Evolutionary paleobiology (pp. 123–160). Chicago, IL: University of Chicago Press.

    Google Scholar 

  • Bapteste, E., Bouchard, F., & Burian, R. M. (2012). Philosophy and evolution: Minding the gap between evolutionary patterns and tree-like patterns. Methods in Molecular Biology, 856, 81–110.

    Article  Google Scholar 

  • Bardon, A. (2007). Reliabilism, proper function, and serendipitous malfunction. Philosophical Investigations, 30(1), 45–64.

    Article  Google Scholar 

  • Barker, G. (2008). Biological levers and extended adaptationism. Biology and Philosophy, 23(1), 1–25.

    Article  Google Scholar 

  • Barker, G., & Odling-Smee, J. (2013). Integrating ecology and evolution: Niche Construction and ecological engineering. In G. Barker, E. Desjardins, & T. Pearce (Eds.), Entangled life: Organism and environment in the biological and social sciences (pp. 187–211). New York: Springer.

    Google Scholar 

  • Beisner, B. E., Haydon, D. T., & Cuddington, K. (2003). Alternative stable states in ecology. Frontiers in Ecology and the Environment, 1(7), 376.

    Article  Google Scholar 

  • Bertrand, M. (2013). Proper environment and the SEP account of biological function. Synthese, 190(9), 1503–1517.

    Article  Google Scholar 

  • Bigelow, J., & Pargetter, R. (1987). Functions. Journal of Philosophy, 84(4), 181–196.

    Article  Google Scholar 

  • Biswas, S. R., & Mallik, A. U. (2010). Disturbance effects on species diversity and functional diversity in riparian and upland plant communities. Ecology, 91(1), 28–35.

    Article  Google Scholar 

  • Blandin, P. (2007). L’écosystème existe-t-il ? Le tout et la partie en écologie. In T. Martin (Ed.), Le tout & les parties dans les systèmes naturels: Écologie, biologie, médecine, astronomie, physique et chimie (pp. 21–46). Paris: Vuibert.

    Google Scholar 

  • Blandin, P., & Lamotte, M. (1989). L’organisation hiérarchique des systèmes écologiques. Società italiana di Ecologia Atti, 7, 35–48.

    Google Scholar 

  • Boorse, C. (1976). Wright on functions. Philosophical Review, 85(1), 70–86.

    Article  Google Scholar 

  • Boorse, C. (2002). A rebuttal on functions. In A. Ariew, R. Cummins, & M. Perlman (Eds.), Functions: New essays in the philosophy of psychology and biology (pp. 63–112). Oxford, NY: Oxford University Press.

    Google Scholar 

  • Bouchard, F. (2008). Causal processes, fitness, and the differential persistence of lineages. Philosophy of Science, 75(5), 560–570.

    Article  Google Scholar 

  • Bouchard, F. (2009). Understanding colonial traits using symbiosis research and ecosystem ecology. Biological Theory, 4(3), 240–246.

    Article  Google Scholar 

  • Bouchard, F. (2010). Symbiosis, lateral function transfer and the (many) saplings of life. Biology and Philosophy, 24(4), 623–641.

    Article  Google Scholar 

  • Bouchard, F. (2011). Darwinism without populations: A more inclusive understanding of the “Survival of the Fittest”. Studies in History and Philosophy of Science Part C, 42(1), 106–114.

    Article  Google Scholar 

  • Bouchard, F. (2013a). How Ecosystem evolution strengthens the case for functional pluralism. In P. Huneman (Ed.), Functions: Selection and mechanisms (pp. 83–95). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Bouchard, F. (2013b). What Is a symbiotic superindividual and how do you measure its fitness? In P. Huneman & F. Bouchard (Eds.), From groups to individuals. Evolution and emerging individuality (p. 243). Cambridge: MIT Press.

    Google Scholar 

  • Bouchard, F. (2014). Ecosystem evolution is about variation and persistence, not populations and reproduction. Biological Theory, 9(4), 382–391.

    Article  Google Scholar 

  • Bouchard, F., & Rosenberg, A. (2004). Fitness, probability and the principles of natural selection. British Journal for the Philosophy of Science, 55(4), 693–712.

    Article  Google Scholar 

  • Bourrat, P. (2014). From survivors to replicators: Evolution by natural selection revisited. Biology and Philosophy, 29(4), 517–538.

    Article  Google Scholar 

  • Brandon, R. N. (1990). Adaptation and environment. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Brandon, R. N. (2013). A general case for functional pluralism. In P. Huneman (Ed.), Functions: Selection and mechanisms (pp. 97–104). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Brennan, A. (1988). Thinking about nature. Athens: University of Georgia Press.

    Google Scholar 

  • Brown, P. M., & Cook, B. (2006). Early settlement forest structure in Black Hills ponderosa pine forests. Forest Ecology and Management, 223(1–3), 284–290.

    Article  Google Scholar 

  • Buss, L. W. (1983). Evolution, development, and the units of selection. Proceedings of the National Academy of Sciences of the United States of America, 80(5), 1387–1391.

    Article  Google Scholar 

  • Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4(8), 765–781. doi:10.1007/s10021-001-0045-9.

    Article  Google Scholar 

  • Christensen, W. D., & Bickhard, M. H. (2002). The process dynamics of normative function. The Monist, 85(1), 3–28.

    Article  Google Scholar 

  • Clements, F. E. (1916). Plant succession: An analysis of the development of vegetation. Washington, DC: Carnegie Institution of Washington.

    Book  Google Scholar 

  • Clements, F. E. (1936). Nature and structure of the climax. Journal of Ecology, 24(1), 252–284.

    Article  Google Scholar 

  • Collier, J., & Cumming, G. (2011). A dynamical approach to ecosystem identity. In K. deLaplante, B. Brown, & K. A. Peacock (Eds.), Philosophy of ecology (pp. 201–218). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science, 199(4335), 1302–1310.

    Article  Google Scholar 

  • Cooper, G. J. (2003). The science of the struggle for existence: On the foundations of ecology. Cambridge, NY: Cambridge University Press.

    Book  Google Scholar 

  • Cropp, R., & Gabric, A. (2002). Ecosystem adaptation: Do ecosystems maximize resilience? Ecology, 83(7), 2019–2026.

    Article  Google Scholar 

  • Cummins, R. C. (1975). Functional analysis. Journal of Philosophy, 72, 741–764.

    Article  Google Scholar 

  • Curtis, J. T., & McIntosh, R. P. (1951). An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology, 32(3), 476.

    Article  Google Scholar 

  • Davies, P. S. (2001). Norms of nature: Naturalism and the nature of functions. Cambridge, MA: The MIT Press.

    Google Scholar 

  • DeLaplante, K. (2005). Is ecosystem management a postmodern science? In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 397–416). Amsterdam: Elsevier Academic Press.

    Chapter  Google Scholar 

  • DeLaplante, K., & Odenbaugh, J. (Unpublished). What Isn’t Wrong with Ecosystem Ecology? Retrieved from http://www.public.iastate.edu/~kdelapla/research/research/pubs_assets/wiwwee.pdf.

  • DeLaplante, K., & Picasso, V. (2011). The biodiversity-ecosystem function debate in ecology. In K. DeLaplante, B. Brown, & K. A. Peacock (Eds.), Philosophy of ecology (pp. 219–250). Oxford: Elsevier.

    Google Scholar 

  • Desjardins, E., Barker, G., Lindo, Z., Dieleman, C., & Dussault, A. C. (2015). Promoting resilience. The Quarterly Review of Biology, 90(2), 147–165.

    Article  Google Scholar 

  • Doolittle, W. F. (2000). Uprooting the tree of life. Scientific American, 282(2), 90–95.

    Article  Google Scholar 

  • Doolittle, W. F. (2014). Natural selection through survival alone, and the possibility of Gaia. Biology and Philosophy, 29(3), 415–423.

    Article  Google Scholar 

  • Doolittle, W. F., & Bapteste, E. (2007). Pattern pluralism and the Tree of Life hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 104(7), 2043–2049.

    Article  Google Scholar 

  • Dunbar, M. J. (1960). The evolution of stability in marine environments natural selection at the level of the ecosystem. American Naturalist, 94(875), 129–136.

    Article  Google Scholar 

  • Dunbar, M. J. (1972). The ecosystem as a unit of natural selection. Transactions of the Connecticut Academy of Arts and Sciences, 44, 113–130.

    Google Scholar 

  • Dupré, J. (1993). The disorder of things: Metaphysical foundations of the disunity of science. Cambridge, MI: Harvard University Press.

    Google Scholar 

  • Dupré, J., & O’Malley, M. A. (2009). Varieties of living things: Life at the intersection of lineage and metabolism. Philosophy & Theory in Biology, 1, 1–25.

    Article  Google Scholar 

  • Eliot, C. H. (2011). The legend of order and chaos. In K. deLaplante, B. Brown, & K. A. Peacock (Eds.), Philosophy of ecology (pp. 49–107). Oxford: Elsevier.

    Chapter  Google Scholar 

  • Elton, C. S. (1927). Animal ecology. New York: The Macmillan Company.

    Google Scholar 

  • Elton, C. S. (1930). Animal ecology and evolution. Oxford: Clarendon Press.

    Google Scholar 

  • Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., et al. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology, Evolution, and Systematics, 35(1), 557–581.

    Article  Google Scholar 

  • Futuyma, D. J. (1986). Evolution and coevolution in communities. In D. M. Raup & D. Jablonski (Eds.), Patterns and processes in the history of life (pp. 369–381). Berlin: Springer.

  • Gauthier, S., Bergeron, Y., & Simon, I. P. (1996). Effects of fire regime on the serotiny level of jack pine. Journal of Ecology, 84(4), 539–548.

    Article  Google Scholar 

  • Gleason, H. A. (1917). The structure and development of the plant association. Bulletin of the Torrey Botanical Club, 44(10), 463–481.

    Article  Google Scholar 

  • Gleason, H. A. (1926). The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club, 53, 7–26.

    Article  Google Scholar 

  • Godfrey-Smith, P. (1993). Functions: Consensus without unity. Pacific Philosophical Quarterly, 74(3), 196–208.

    Google Scholar 

  • Godfrey-Smith, P. (1994). A modern history theory of functions. Noûs, 28(3), 344–362.

    Article  Google Scholar 

  • Godfrey-Smith, P. (2009). Darwinian populations and natural selection. Oxford: Oxford University Press.

  • Godfrey-Smith, P. (2013). Darwinian individuals. In P. Huneman & F. Bouchard (Eds.), From groups to individuals. Evolution and emerging individuality (pp. 17–36). Cambridge: MIT Press.

    Google Scholar 

  • Gough, L., Goldberg, D., Hershock, C., Pauliukonis, N., & Petru, M. (2001). Investigating the community consequences of competition among clonal plants. Evolutionary Ecology, 15(4–6), 547–563. doi:10.1023/A:1016061604630.

    Article  Google Scholar 

  • Gould, S. J., & Vrba, E. S. (1982). Exaptation: A missing term in the science of form. Paleobiology, 8(1), 4–15.

    Article  Google Scholar 

  • Griffiths, P. E. (2006). Function, homology, and character individuation. Philosophy of Science, 73(1), 1–25.

    Article  Google Scholar 

  • Grime, J. P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–347.

    Article  Google Scholar 

  • Grimm, N. B. (1995). Why link species and ecosystems? A perspective from ecosystem ecology. In C. G. Jones & J. H. Lawton (Eds.), Linking species & ecosystems (pp. 5–15). New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Grimm, V. (1998). To be, or to be essentially the same: The “self-identity of ecological units”. Trends in Ecology & Evolution, 13(8), 298–299. doi:10.1016/S0169-5347(98)01421-9.

    Article  Google Scholar 

  • Gunderson, L. H., Allen, C. R., & Holling, C. S. (2009). Foundations of ecological resilience. Washington DC: Island Press.

  • Gunderson, L. H., & Holling, C. S. (2002). Panarchy: Understanding transformations in human and natural systems. Washington: Island Press.

    Google Scholar 

  • Hagen, J. B. (1989). Research perspectives and the anomalous status of modern ecology. Biology and Philosophy, 4(4), 433–455.

    Article  Google Scholar 

  • Hagen, J. B. (1992). An entangled bank: The origins of ecosystem ecology. New Brunswick, NJ: Rutgers University Press.

    Google Scholar 

  • Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4(1), 1–23.

    Article  Google Scholar 

  • Holling, C. S. (1986). The resilience of terrestrial ecosystems: Local surprise and global change. In W. C. Clark & R. E. Munn (Eds.), Sustainable development of the biosphere (pp. 292–320). Cambridge: Cambridge University Press.

    Google Scholar 

  • Holling, C. S. (1996). Engineering resilience versus ecological resilience. In P. C. Schulze (Ed.), Engineering within ecological constraints (pp. 31–44). Washington, DC: National Academy Press. Accessed 8 July 2014.

  • Holt, R. D. (1995). Linking species and ecosystems: Where’s darwin? In C. G. Jones & J. H. Lawton (Eds.), Linking species & ecosystems (pp. 273–279). New York: Chapman & Hall.

    Chapter  Google Scholar 

  • Hull, D. L. (1980). Individuality and selection. Annual Review of Ecology and Systematics, 11(1), 311–332.

    Article  Google Scholar 

  • Huston, M. (1979). A general hypothesis of species diversity. American Naturalist, 113(1), 81–101.

    Article  Google Scholar 

  • Hutchinson, G. E. (1965). The ecological theater and the evolutionary play. New Haven: Yale University Press.

    Google Scholar 

  • Ives, A. R. (2005). Community diversity and stability: Changing perspectives and changing definitions. In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 159–182). Amsterdam: Elsevier Academic Press. Accessed 18 September 2014.

  • Jax, K. (2005). Function and “functioning” in ecology: What does it mean? Oikos, 111(3), 641–648.

    Article  Google Scholar 

  • Jax, K. (2010). Ecosystem functioning. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Jax, K., Jones, C. G., & Pickett, S. T. A. (1998). The self-identity of ecological units. Oikos, 82(2), 253.

    Article  Google Scholar 

  • Keane, R.E., Ryan, K.C., Veblen, T.T., Allen, C.D., Logan, J., & Hawkes, B. (2002). Cascading effects of fire exclusion in rocky mountain ecosystems: A literature review (General Technical Report No. RMRSGTR-91). Fort Collins: Department of Agriculture, Forest Service, Rocky Mountain Research Station.

  • Krohs, U. (2010). Dys-, mal- et non-: l’autre face de la fonctionnalité. In A. de Ricqlès & J. Gayon (Eds.), Les fonctions: Des organismes aux artefacts (pp. 337–351). Paris: PUF.

    Google Scholar 

  • Lamotte, M., & Blandin, P. (1985). La transformation des écosystèmes cadre et moteur de l’évolution des espèces. In L. Bullini, M. Ferraguti, F. Mondella, & A. Oliverio (Eds.), La vita e la sua storia. Stato e prospettive degli studi de genetica (pp. 161–190). Milan: Scientia.

  • Lehman, C. L., & Tilman, D. (2000). Biodiversity, stability, and productivity in competitive communities. The American Naturalist, 156(5), 534–552.

    Article  Google Scholar 

  • Leibold, M. A., & Norberg, J. (2004). Biodiversity in metacommunities: Plankton as complex adaptive systems? Limnology and Oceanography, 49, 1278–1289.

    Article  Google Scholar 

  • Levin, S. A. (1998). Ecosystems and the biosphere as complex adaptive systems. Ecosystems, 1(5), 431–436. doi:10.1007/s100219900037.

    Article  Google Scholar 

  • Levin, S. A. (1999). Fragile dominion: Complexity and the commons. Reading, MA: Perseus Books.

    Google Scholar 

  • Levin, S. A. (2005). Self-organization and the emergence of complexity in ecological systems. Bioscience, 55(12), 1075–1079.

    Article  Google Scholar 

  • Levins, R., & Lewontin, R. C. (1985). The dialectical biologist. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Loehle, C., & Pechmann, J. H. K. (1988). Evolution: The missing ingredient in systems ecology. American Naturalist, 132(6), 884–899.

    Article  Google Scholar 

  • Loreau, M. (2000). Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos, 91(1), 3–17.

    Article  Google Scholar 

  • Loreau, M. (2010a). Linking biodiversity and ecosystems: Towards a unifying ecological theory. Philosophical transactions of the Royal Society of London Series B: Biological Sciences, 365(1537), 49–60. doi:10.1098/rstb.2009.0155.

    Article  Google Scholar 

  • Loreau, M. (2010b). From populations to ecosystems theoretical foundations for a new ecological synthesis. Princeton: Princeton University Press.

  • Loreau, M., Downing, A., Emmerson, M., Gonzalez, A., Hughes, J., Inchausti, P., et al. (2002). A new look at the relationship between diversity and stability. In M. Loreau, S. Naeem, & P. Inchausti (Eds.), Biodiversity and ecosystem functioning: Synthesis and perspectives. Oxford, NY: Oxford University Press.

    Google Scholar 

  • Loreau, M., Mouquet, N., & Holt, R. D. (2003). Meta-ecosystems: A theoretical framework for a spatial ecosystem ecology. Ecology Letters, 6(8), 673–679. doi:10.1046/j.1461-0248.2003.00483.x.

    Article  Google Scholar 

  • Maclaurin, J., & Sterelny, K. (2008). What is biodiversity?. Chicago: University of Chicago Press.

    Book  Google Scholar 

  • Matthen, M. P. (1988). Biological functions and perceptual content. Journal of Philosophy, 85(1), 5–27.

    Article  Google Scholar 

  • McCann, K. S. (2005). Perspectives on diversity, structure, and stability. In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 183–200). Amsterdam: Elsevier Academic Press.

  • McLaughlin, P. (2001). What functions explain: Functional explanation and self-reproducing systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mikkelson, G. M. (2004). Biological diversity, ecological stability, and downward causation. In M. Oksanen & J. Pietarinen (Eds.), Philosophy and biodiversity (pp. 119–129). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Mikkelson, G. M. (2009). Diversity-stability hypothesis. In J. B. Callicott, R. Frodeman, V. Davion, B. G. Norton, C. Palmer, & P. B. Thompson (Eds.), Encyclopedia of environmental ethics and philosophy. Farmington Hills, MI: Macmillan Press.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being. Washington, DC: Island Press.

  • Millikan, R. G. (1989a). In defense of proper functions. Philosophy of Science, 56(6), 288–302.

    Article  Google Scholar 

  • Millikan, R. G. (1989b). An ambiguity in the notion “function”. Biology and Philosophy, 4(2), 172–176.

    Article  Google Scholar 

  • Mills, L. S., Soulé, M. E., & Doak, D. F. (1993). The keystone-species concept in ecology and conservation. BioScience, 43(4), 219–224.

    Article  Google Scholar 

  • Mills, S. K., & Beatty, J. H. (1979). The propensity interpretation of fitness. Philosophy of Science, 46(2), 263–286.

    Article  Google Scholar 

  • Mitchell, S. D. (1993). Dispositions or etiologies? A comment on Bigelow and Pargetter. Journal of Philosophy, 60(5), 249–259.

    Article  Google Scholar 

  • Mitton, J. B., & Grant, M. C. (1996). Genetic variation and the natural history of quaking aspen. BioScience, 46(1), 25–31.

    Article  Google Scholar 

  • Mori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews, 88(2), 349–364.

    Article  Google Scholar 

  • Mossio, M., Saborido, C., & Moreno, A. (2009). An organizational account of biological functions. British Journal for the Philosophy of Science, 60(4), 813–841.

    Article  Google Scholar 

  • Mutch, R. W. (1970). Wildland fires and ecosystems: A hypothesis. Ecology, 51(6), 1046–1051.

    Article  Google Scholar 

  • Naeem, S. (1998). Species redundancy and ecosystem reliability. Conservation Biology, 12(1), 39–45.

    Article  Google Scholar 

  • Naeem, S. (2002). Ecosystem consequences of biodiversity loss: The evolution of a paradigm. Ecology, 83(6), 1537. doi:10.2307/3071972.

    Article  Google Scholar 

  • Neander, K. (1991a). The teleological notion of “function”. Australasian Journal of Philosophy, 69(4), 454–468.

    Article  Google Scholar 

  • Neander, K. (1991b). Functions as selected effects: The conceptual analyst’s defense. Philosophy of Science, 58(2), 168–184.

    Article  Google Scholar 

  • Nicolson, M., & McIntosh, R. P. (2002). H. A. Gleason and the individualistic hypothesis revisited. Bulletin of the Ecological Society of America, 83(2), 133–142.

    Google Scholar 

  • Norberg, J. (2004). Biodiversity and ecosystem functioning: A complex adaptive systems approach. Limnology and Oceanography, 49, 1269–1277.

    Article  Google Scholar 

  • Norberg, J., Swaney, D. P., Dushoff, J., Lin, J., Casagrandi, R., & Levin, S. A. (2001). Phenotypic diversity and ecosystem functioning in changing environments: A theoretical framework. Proceedings of the National Academy of Sciences of the United States of America, 98(20), 11376–11381.

    Article  Google Scholar 

  • Nunes-Neto, N., Moreno, A., & El-Hani, C.N. (2013a). The implicit consensus about function in philosophy of ecology. In Nunes-Neto, N., El-Hani, C.N., & Moreno, A. (Eds.), The functional discourse in contemporary ecology (pp. 40–65). Salvador: Doctoral dissertation, Universidade Federal da Bahia.

  • Nunes-Neto, N., Do Carmo, R.S., & El-Hani, C.N. (2013b). An epistemological analysis of the functional discourse in the Biodiversity and Ecosystem Functioning research program. In N. Nunes-Neto, C. N. El-Hani, A. Moreno (Eds.), The functional discourse in contemporary ecology (pp. 15–39). Salvador: Doctoral dissertation, Universidade Federal da Bahia.

  • Nunes-Neto, N., Moreno, A., & El-Hani, C. N. (2014). Function in ecology: An organizational approach. Biology and Philosophy, 29(1), 123–141.

    Article  Google Scholar 

  • Odenbaugh, J. (2001). Ecological stability, model building, and environmental policy: A reply to some of the pessimism. Philosophy of Science, 68(S1), S493.

    Article  Google Scholar 

  • Odenbaugh, J. (2010). On the very idea of an ecosystem. In A. Hazlett (Ed.), New waves in metaphysics (pp. 240–258). Basingstoke, NY: Palgrave Macmillan.

    Google Scholar 

  • Odling-Smee, F. J., Laland, K. N., & Feldman, M. W. (2003). Niche construction: The neglected process in evolution. Princeton: Princeton University Press.

    Google Scholar 

  • O’Neill, R. V., Deangelis, D. L., Waide, J. B., & Allen, G. E. (1986). A hierarchical concept of ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • Paine, R. T. (1966). Food web complexity and species diversity. The American Naturalist, 100(910), 65–75.

    Article  Google Scholar 

  • Paine, R. T. (1995). A conversation on refining the concept of keystone species. Conservation Biology, 9(4), 962–964.

    Article  Google Scholar 

  • Partridge, E. (2000). Reconstructing ecology. In D. Pimentel, L. Westra, & R. F. Noss (Eds.), Ecological integrity: Integrating environment, conservation, and health (pp. 79–97). Washington, DC: Island Press.

    Google Scholar 

  • Pickett, S. T., & Ostfeld, R. S. (1995). The shifting paradigm in ecology. In R. L. Knight & S. F. Bates (Eds.), A new century for natural resources management. Washington, DC: Island Press.

    Google Scholar 

  • Pickett, S. T., & White, P. S. (1985). The ecology of natural disturbance and patch dynamics. Orlando, FL: Academic Press.

    Google Scholar 

  • Pickett, S. T., Wu, J., & Cadenasso, M. L. (1999). Patch dynamics and the ecology of disturbed ground: A framework for synthesis. In L. R. Walker (Ed.), Ecosystems of disturbed ground (pp. 707–722). Amsterdam, NY: Elsevier.

    Google Scholar 

  • Pimm, S. L. (1991). The balance of nature?: Ecological issues in the conservation of species and communities. Chicago: University of Chicago Press.

    Google Scholar 

  • Rosenberg, A., & Bouchard, F. (2005). Matthen and Ariew’s obituary for fitness: Reports of its death have been greatly exaggerated. Biology and Philosophy, 20(2–3), 343–353.

    Article  Google Scholar 

  • Saborido, C., Mossio, M., & Moreno, A. (2011). Biological organization and cross-generation functions. British Journal for the Philosophy of Science, 62(3), 583–606.

    Article  Google Scholar 

  • Sagoff, M. (2003). The plaza and the pendulum: Two concepts of ecological science. Biology and Philosophy, 18(4), 529–552.

    Article  Google Scholar 

  • Schlosser, G. (1998). Self-re-production and functionality. Synthese, 116(3), 303–354.

    Article  Google Scholar 

  • Schwilk, D. W., & Ackerly, D. D. (2001). Flammability and serotiny as strategies: Correlated evolution in pines. Oikos, 94(2), 326–336.

    Article  Google Scholar 

  • Shrader-Frechette, K., & McCoy, E. D. (1993). Method in ecology: Strategies for conservation. Cambridge, NY: Cambridge University Press.

    Book  Google Scholar 

  • Sober, E., & Wilson, D. S. (1994). A critical review of philosophical work on the units of selection problem. Philosophy of Science, 61(4), 534–555.

    Article  Google Scholar 

  • Sterelny, K. (2005). The elusive synthesis. In K. Cuddington & B. E. Beisner (Eds.), Ecological paradigms lost routes of theory change (pp. 311–329). Amsterdam: Elsevier Academic Press.

  • Sterelny, K. (2006). Local ecological communities. Philosophy of Science, 73(2), 215–231.

    Article  Google Scholar 

  • Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80(5), 1455–1474.

    Google Scholar 

  • Turner, J. S. (2004). Extended phenotypes and extended organisms. Biology and Philosophy, 19(3), 327–352.

    Article  Google Scholar 

  • Walsh, D. M. (1996). Fitness and function. British Journal for the Philosophy of Science, 47(4), 553–574.

    Article  Google Scholar 

  • White, P. S., Harrod, J., Romme, W., & Betancourt, J. (1999). The role of disturbance and temporal dynamics. In R. C. Szaro, N. C. Johnson, W. T. Sexton, & A. J. Malk (Eds.), Ecological stewardship: A common reference for ecosystem management (Vol. 2, pp. 281–312). Oxford: Elsevier Science.

    Google Scholar 

  • Whittaker, R. H. (1951). A criticism of the plant association and climatic climax concepts. Northwest Science, 25(1), 17–31.

    Google Scholar 

  • Whittaker, R. H. (1975). Communities and ecosystems (2nd ed.). New York: Macmillan, Collier.

    Google Scholar 

  • Whittaker, R. H., & Woodwell, G. M. (1972). Evolution of natural communities. In J. A. Wiens (Ed.), Ecosystem structure and function (pp. 137–159). Corvallis: Oregon State University Press.

    Google Scholar 

  • Williams, G. C. (1966). Adaptation and natural selection: A critique of some current evolutionary thought. Princeton, NJ: Princeton University Press.

    Google Scholar 

  • Wilson, D. S. (1976). Evolution on the level of communities. Science, 192(4246), 1358–1360.

    Article  Google Scholar 

  • Wilson, D. S., & Sober, E. (1989). Reviving the superorganism. Journal of Theoretical Biology, 136(3), 337–356.

    Article  Google Scholar 

  • Wouters, A. (2003). Four notions of biological function. Studies in History and Philosophy of Science Part C, 34(4), 633–668.

    Article  Google Scholar 

  • Wouters, A. (2005). The function debate in philosophy. Acta Biotheoretica, 53(2), 123–151.

    Article  Google Scholar 

  • Wouters, A. (2013). Biology’s functional perspective: Roles, advantages and organization. In K. Kampourakis (Ed.), The philosophy of biology: A companion for educators (pp. 455–486). Dordrecht: Springer Science & Business Media.

    Chapter  Google Scholar 

  • Wright, L. (1973). Functions. Philosophical Review, 82(2), 139–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antoine C. Dussault.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dussault, A.C., Bouchard, F. A persistence enhancing propensity account of ecological function to explain ecosystem evolution. Synthese 194, 1115–1145 (2017). https://doi.org/10.1007/s11229-016-1065-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-016-1065-5

Keywords

Navigation