Skip to main content
Log in

How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics

  • Published:
Synthese Aims and scope Submit manuscript

Abstract

The paper has two aims: (1) it sets out to show that it is well motivated to seek for an account of quantum non-locality in the framework of ontic structural realism (OSR), which integrates the notions of holism and non-separability that have been employed since the 1980s to achieve such an account. However, recent research shows that OSR on its own cannot provide such an account. Against this background, the paper argues that by applying OSR to the primitive ontology theories of quantum physics, one can accomplish that task. In particular, Bohmian mechanics offers the best prospect for doing so. (2) In general, the paper seeks to bring OSR and the primitive ontology theories of quantum physics together: on the one hand, in order to be applicable to quantum mechanics, OSR has to consider what the quantum ontology of matter distributed in space-time is. On the other hand, as regards the primitive ontology theories, OSR provides the conceptual tools for these theories to answer the question of what the ontological status of the wave-function is.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. See notably Norsen (2009), Seevinck (2010) and Seevinck and Uffink (2011) as well as the encyclopedia entries on Bell’s theorem by Shimony (2009) and by Goldstein et al. (2011).

  2. Chang and Cartwright (1993, Sect. 3) consider such an account, but do not work it out.

  3. See Salart et al. (2008), Bancal et al. (2012) and Cocciaro, Faetti and Fronzoni (2011 and 2013).

  4. See SanPedro (2012) and Hofer-Szabó, Rédei and Szabó (2012, ch. 9) for an overview and discussion.

  5. See notably Price (1996, ch. 8 and 9). See furthermore the papers in Studies in History and Philosophy of Modern Physics 38 (2008), pp. 705–784.

  6. See notably Albert (1996) and the papers in Albert and Ney (2013) for discussion. That space cannot be considered as the configuration space of the universe in this case, since there is no configuration of anything in another space (i.e. three-dimensional space or four-dimensional space-time) that the points of this high-dimensional space represent.

  7. The term “primitive ontology” goes back to Dürr, Goldstein and Zanghì (2013, ch. 2, see end of Sect. 2.2, paper originally published 1992).

  8. The Everett-style primitive ontology contemplated in Allori et al. (2011) is an exception, but it is then doubtful what the motivation is to advance a primitive ontology instead of simply going for wave-function realism.

  9. See Belot (2012, pp. 77–80) and Esfeld et al. (2013, Sects.  4–5) for BM as well as Dorato and Esfeld (2010) for GRW.

  10. See Bell (2004, ch. 4) and Norsen (2014) as to how BM accounts for the outcomes of spin measurements—such as the EPR experiment in the version of Bohm (1951, pp. 611–622)—in terms of the temporal development of the position of particles as described by the wave-function.

References

  • Albert, D. Z. (1996). Elementary quantum metaphysics. In J. T. Cushing, A. Fine, & S. Goldstein (Eds.), Bohmian mechanics and quantum theory: an appraisal (pp. 277–284). Dordrecht: Kluwer.

  • Albert, D. Z., & Ney, A. (Eds.). (2013). The wave function: essays in the metaphysics of quantum mechanics. Oxford: Oxford University Press.

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2008). On the common structure of Bohmian mechanics and the Ghirardi–Rimini–Weber theory. British Journal for the Philosophy of Science, 59, 353–389.

    Article  Google Scholar 

  • Allori, V., Goldstein, S., Tumulka, R., & Zanghì, N. (2011). Many worlds and Schrödinger’s first quantum theory. British Journal for the Philosophy of Science, 62, 1–27.

    Article  Google Scholar 

  • Aspect, A., Dalibard, J., & Roger, G. (1982). Experimental test of Bell’s inequalities using time-varying analyzers. Physical Review Letters, 49, 1804–1807.

    Article  Google Scholar 

  • Bancal, J.-D., Pironio, S., Acin, A., Liang, Y.-C., Scarani, V., & Gisin, N. (2012). Quantum non-locality based on finite speed causal influences leads to superluminal signalling. Nature Physics, 8, 867–870.

  • Bell, J. S. (2004). Speakable and unspeakable in quantum mechanics (2nd ed., 1st ed. 1987). Cambridge: Cambridge University Press.

  • Bell, J. S., Shimony, A., Horne, M. A., & Clauser, J. F. (1985). An exchange on local beables. Dialectica, 39, 85–110.

    Article  Google Scholar 

  • Belot, G. (2012). Quantum states for primitive ontologists. A case study. European Journal for Philosophy of Science, 2, 67–83.

    Article  Google Scholar 

  • Bohm, D. (1951). Quantum theory. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Bohm, D. (1952). A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. Physical Review, 85, 166–193.

    Article  Google Scholar 

  • Chang, H., & Cartwright, N. (1993). Causality and realism in the EPR experiment. Erkenntnis, 38, 169–190.

    Article  Google Scholar 

  • Cocciaro, B., Faetti, S., & Fronzoni, L. (2011). A lower bound for the velocity of quantum communications in the preferred frame. Physics Letters A, 375, 379–384.

    Article  Google Scholar 

  • Cocciaro, B., Faetti, S., & Fronzoni, L., (2013). In search of superluminal quantum communications: recent experiments and possible improvements. arXiv:1304.2282 [quant-ph].

  • Colbeck, R.. & Renner, R., (2012). Is a system’s wave function in one-to-one correspondence with its elements of reality? Physical Review Letters 108, 150402.

  • de Broglie, Louis (1928). La nouvelle dynamique des quanta. Electrons et photons. Rapports et discussions du cinquième Conseil de physique tenu à Bruxelles du 24 au 29 octobre 1927 sous les auspices de l’Institut international de physique Solvay. (pp. 105–132) Paris: Gauthier-Villars. (G. Bacciagaluppi & A. Valentini (2009). Quantum theory at the crossroads. Reconsidering the 1927 Solvay conference, Trans.) (pp. 341–371). Cambridge: Cambridge University Press.

  • de Broglie, L. (1964). The current interpretation of wave mechanics. A critical study. Amsterdam: Elsevier.

    Google Scholar 

  • Dorato, M., & Esfeld, M. (2010). GRW as an ontology of dispositions. Studies in History and Philosophy of Modern Physics, 41, 41–49.

    Article  Google Scholar 

  • Dürr, D., Goldstein, S., & Zanghì, N. (2013). Quantum physics without quantum philosophy. Berlin: Springer.

    Book  Google Scholar 

  • Egg, M. (2013). Delayed-choice experiments and the metaphysics of entanglement. Foundations of Physics, 43, 1124–1135.

    Article  Google Scholar 

  • Einstein, A., Podolsky, B., & Rosen, N. (1935). Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777–780.

    Article  Google Scholar 

  • Esfeld, M. (2004). Quantum entanglement and a metaphysics of relations. Studies in History and Philosophy of Modern Physics, 35, 601–617.

    Article  Google Scholar 

  • Esfeld, M. (2009). The modal nature of structures in ontic structural realism. International Studies in the Philosophy of Science, 23, 179–194.

    Article  Google Scholar 

  • Esfeld, M. (2013). Ontic structural realism and the interpretation of quantum mechanics. European Journal for Philosophy of Science, 3, 19–32.

    Article  Google Scholar 

  • Esfeld, M., & Lam, V. (2008). Moderate structural realism about space-time. Synthese, 160, 27–46.

    Article  Google Scholar 

  • Esfeld, M., Lazarovici, D., Hubert, M., & Dürr, D. (2013). The ontology of Bohmian mechanics. British Journal for the Philosophy of Science. doi:10.1093/bjps/axt019.

  • French, S. (2014). The structure of the world. Metaphysics and representation. Oxford: Oxford University Press.

    Book  Google Scholar 

  • French, S., & Ladyman, J. (2003). Remodelling structural realism: quantum physics and the metaphysics of structure. Synthese, 136, 31–56.

    Article  Google Scholar 

  • Fuchs, C. A. (2010). QBism, the perimeter of quantum Bayesianism. arXiv:1003.5209 [quant-ph].

  • Ghirardi, G. C., Grassi, R., & Benatti, F. (1995). Describing the macroscopic world: closing the circle within the dynamical reduction program. Foundations of Physics, 25, 5–38.

    Article  Google Scholar 

  • Ghirardi, G. C. (1990). Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Physical Review A, 42, 78–89.

    Article  Google Scholar 

  • Ghirardi, G. C., Rimini, A., & Weber, T. (1986). Unified dynamics for microscopic and macroscopic systems. Physical Review D, 34, 470–491.

    Article  Google Scholar 

  • Gisin, N. (1989). Stochastic quantum dynamics and relativity. Helvetica Physica Acta, 62, 363–371.

  • Goldstein, S., Norsen, T., Tausk, Daniel V., & Zanghì, N. (2011). “Bell’s theorem”. http://www.scholarpedia.org/article/Bell’s\_theorem. Accessed 4 Nov 2013.

  • Healey, R. A. (1991). Holism and nonseparability. Journal of Philosophy, 88, 393–421.

    Article  Google Scholar 

  • Healey, R. (2012). Quantum theory: a pragmatist approach. British Journal for the Philosophy of Science, 63, 729–771.

    Article  Google Scholar 

  • Henson, J. (2013). Non-separability does not relieve the problem of Bell’s theorem. Foundations of Physics, 43, 1008–1038.

    Article  Google Scholar 

  • Hofer-Szabó, G., Rédei, M., & Szabó, L. E. (2013). The principle of the common cause. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Howard, D. (1985). Einstein on locality and separability. Studies in History and Philosophy of Science, 16, 171–201.

    Article  Google Scholar 

  • Howard, D. (1989). Holism, separability, and the metaphysical implications of the Bell experiments. In J. T. Cushing & E. McMullin (Eds.), Philosophical consequences of quantum theory. Reflections on Bell’s theorem (pp. 224–253). Notre Dame: University of Notre Dame Press.

    Google Scholar 

  • Ladyman, J. (1998). What is structural realism? Studies in History and Philosophy of Modern Science, 29, 409–424.

    Article  Google Scholar 

  • Ladyman, J., & Ross, D. (2007). Every thing must go. Metaphysics naturalized. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Maudlin, T. (2007). The metaphysics within physics. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Maudlin, T. (2011). Quantum non-locality and relativity (3rd ed.). Chichester: Wiley-Blackwell.

    Book  Google Scholar 

  • Monton, B. (2004). The problem of ontology for spontaneous collapse theories. Studies in History and Philosophy of Modern Physics, 35, 407–421.

    Article  Google Scholar 

  • Monton, B. (2006). Quantum mechanics and 3N-dimensional space. Philosophy of Science, 73, 778–789.

    Article  Google Scholar 

  • Norsen, T. (2005). Einstein’s boxes. American Journal of Physics, 73, 164–176.

    Article  Google Scholar 

  • Norsen, T. (2009). Local causality and completeness: Bell vs. Jarrett. Foundations of Physics, 39, 273–294.

    Article  Google Scholar 

  • Norsen, T. (2014). The pilot-wave perspective on spin. American Journal of Physics, 82, 337–348.

  • Price, H. (1996). Time’s arrow and Archimedes’ point. New directions for the physics of time. Oxford: Oxford University Press.

    Google Scholar 

  • Pusey, M. F., Barrett, J., & Rudolph, T. (2012). On the reality of the quantum state. Nature Physics, 8, 475–478.

    Article  Google Scholar 

  • Salart, D., Baas, A., Branciard, C., Gisin, N., & Zbinden, H. (2008). Testing the speed of ‘spooky action at a distance. Nature, 454, 861–864.

    Article  Google Scholar 

  • SanPedro, I. (2012). Causation, measurement relevance and no-conspiracy in EPR. European Journal for Philosophy of Science, 2, 137–156.

    Article  Google Scholar 

  • Schrödinger, E. (1935). Discussion of probability relations between separated systems. Proceedings of the Cambridge Philosophical Society, 31, 555–563.

    Article  Google Scholar 

  • Seevinck, M. P. (2010). Can quantum theory and special relativity peacefully coexist? Invited white paper for Quantum Physics and the Nature of Reality, John Polkinghorne 80th Birthday Conference. St Annes College, Oxford. 26–29 Sept 2010. arXiv:1010.3714 [quant-ph].

  • Seevinck, M. P. & Uffink, J. (2011). Not throwing out the baby with the bathwater: Bell’s condition of local causality mathematically ‘sharp and clean’. In D. Dieks, W. Gonzalez, S. Hartmann, T. Uebel & M. Weber (Eds.), Explanation, prediction and confirmation. New trends and old ones reconsidered. (pp. 425–450.) Dordrecht: Springer.

  • Shimony, A. (2009). Bell’s theorem. In E. N. Zalta (Ed.), Stanford Encyclopedia of Philosophy. http://plato.stanford.edu/entries/bell-theorem. Accessed 4 Nov 2013.

  • Solé, A. (2013). Bohmian mechanics without wave function ontology. Studies in History and Philosophy of Modern Physics, 44, 365–378.

    Article  Google Scholar 

  • Teller, P. (1986). Relational holism and quantum mechanics. British Journal for the Philosophy of Science, 37, 71–81.

    Article  Google Scholar 

  • Tumulka, R. (2006). A relativistic version of the Ghirardi-Rimini-Weber model. Journal of Statistical Physics, 125, 825–844.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Esfeld.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfeld, M. How to account for quantum non-locality: ontic structural realism and the primitive ontology of quantum physics. Synthese 194, 2329–2344 (2017). https://doi.org/10.1007/s11229-014-0549-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11229-014-0549-4

Keywords

Navigation