Skip to main content
Log in

Adsorption of isoniazid and pyrazinamide drug molecules onto nitrogen-doped single-wall carbon nanotubes: an ab initio study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The noncovalent functionalizations of isoniazid (INH) and pyrazinamide (PZA) antitubercular drugs adsorbed onto perfect and N-doped (6,6) and (10,0) single-wall carbon nanotubes (SWCNTs) have been studied using density functional theory (DFT). The binding energies (B.Es), electronic properties, and nature of interaction for the two nanotube model systems have been compared for both periodic and cluster models. The variations in energy values with distance at the DFT/LDA and DFT/GGA levels of calculation can help in correlating the weak noncovalent functionalization governed by the Lennard-Jones type of interactions. The two molecules exhibit a similar pattern of adsorption onto the nanotube sidewall for periodic and cluster models; however, the B.E. values are comparatively higher for the periodic model counterparts. The negative B.E. values suggest the thermodynamic favorability toward the adsorption and presence of N dopant atom facilitates in better drug binding with the tube sidewall. The frontier orbital analysis and global reactivity descriptors before and after functionalization of INH and PZA onto the SWCNTs corresponding to cluster models are compared and the results analyzed. At a theoretical level of understanding through this study we focus that N ad atom doping onto SWCNTs facilitate in enhancing the reactivity of pristine nanotubes toward drug binding thereby modulating its electronic properties and influencing the adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Saha S, Dinadayalane TC, Leszczynska D, Leszczynski J (2012) Open and capped (5,5) armchair SWCNTs: a comparative study of DFT-based reactivity descriptors. Chem Phys Lett 541:85–91

    Article  CAS  Google Scholar 

  2. Dinadayalane TC, Leszczynski J (2010) Remarkable diversity of carbon–carbon bonds: structures and properties of fullerenes, carbon nanotubes, and graphene. Struct Chem 21:1155–1169

    Article  CAS  Google Scholar 

  3. de Heer WA, Chaelain A, Ugarte D (1995) A carbon nanotube field-emission electron source. Science 270:1179–1180

    Article  Google Scholar 

  4. Terrones M, Ajayan PM, Banhart F, Blase X, Carroll DL, Charlier JC, Czerw R, Foley B, Grobert N, Kamalakaran R, Kohler-Redlich P, Ruhle M, Seeger T, Terrones H (2002) N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl Phys A 74:355–361

    Article  CAS  Google Scholar 

  5. Cho JH, Yang SJ, Lee K, Park CR (2011) Si-doping effect on the enhanced hydrogen storage of single walled carbon nanotubes and graphene. Int J Hydrogen Energy 36:12286–12295

    Article  CAS  Google Scholar 

  6. Ayala P, Arenal R, Rümmeli M, Rubio A, Pichler T (2010) The doping of carbon nanotubes with nitrogen and their potential applications. Carbon 48:575–586

    Article  CAS  Google Scholar 

  7. Saha S, Dinadayalane TC, Murray JS, Leszczynska D, Leszczynski J (2012) Surface reactivity for chlorination on chlorinated (5,5) armchair SWCNT: a computational approach. J Phys Chem C 116:22399–22410

    Article  CAS  Google Scholar 

  8. Esrafili MD (2013) Influence of oxygen/sulfur-termination on electronic structure and surface electrostatic potential of (6,0) carbon nanotube: a DFT study. Struct Chem. doi:10.1007/s11224-012-0191-z

  9. Charlier JC, Terrones M, Baxendale M, Meunier V, Zacharia T, Rupesinghe NL, Hsu WK, Grobert N, Terrones H, Amaratunga GAJ (2002) Enhanced electron field emission in B-doped carbon nanotubes. Nano Lett 2:1191–1195

    Article  CAS  Google Scholar 

  10. Terrones M, Ajayan PM, Banhart F, Blase X, Carroll DL, Charlier JC, Czerw R, Foley B, Grobert N, Kamalakaran R, Kohler-Redlich P, Rühle M, Seeger T, Terrones H (2002) N-doping and coalescence of carbon nanotubes: synthesis and electronic properties. Appl Phys A 74:355–361

    Article  CAS  Google Scholar 

  11. Cruz-Silva E, Barnett ZM, Sumpter BG, Meunier V (2011) Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Phys Rev B 83:155445

    Article  Google Scholar 

  12. Glerup M, Steinmetz J, Samaille D, Stephan O, Enouz S, Loiseau S, Roth S, Bernier P (2004) Synthesis of N-doped SWNT using the arc-discharge procedure. Chem Phys Lett 387:193–197

    Article  CAS  Google Scholar 

  13. Glerup M, Castignolles M, Holzinger M, Hug G, Loiseau A, Bernier P (2003) Synthesis of highly nitrogen-doped multi-walled carbon nanotubes. Chem Commun 20:2542–2543

    Article  Google Scholar 

  14. Castignolles M (2004) Thesis, Université Montpellier II, France

  15. Lee CJ, Lyu SC, Kim HW, Lee JH, Cho KI (2002) Synthesis of bamboo-shaped carbon–nitrogen nanotubes using C2H2–NH3–Fe(CO)5 system. Chem Phys Lett 359:115–120

    Article  CAS  Google Scholar 

  16. Jiang K, Schadler LS, Siegel RW, Zhang X, Zhang H, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39

    Article  CAS  Google Scholar 

  17. Holzinger M, Steinmetz J, Roth S, Glerup M, Graupner R (2005) Purification and functionalisation of nitrogen-doped single-walled carbon nanotubes. AIP Conf Proc 786:211–214

    Article  CAS  Google Scholar 

  18. Cui T, Lv R, Huang Z-H, Zhu H, Zhang J, Li Z, Jia Y, Kang F, Wang K, Wu D (2011) Synthesis of nitrogen-doped carbon thin films and their applications in solar cells. Carbon 49:5022–5028

    Article  CAS  Google Scholar 

  19. Lv R, Cui T, Jun M-S, Zhang Q, Cao A, Su DS, Zhang Z, Yoon S-H, Miyawaki J, Mochida I, Kang F (2011) Open-ended, N-doped carbon nanotube-graphene hybrid nanostructures as high-performance catalyst support. Adv Funct Mater 21:999–1006

    Article  CAS  Google Scholar 

  20. Wang Y, Shao YY, Matson DW, Li JH, Lin YH (2010) Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano 4:1790–1798

    Article  CAS  Google Scholar 

  21. Elias AL et al (2007) Viability studies of pure carbon- and nitrogen-doped nanotubes with Entamoeba histolytica: from amoebicidal to biocompatible structures. Small 3:1723–1729

    Article  CAS  Google Scholar 

  22. Carrero-Sanchez JC, Elías AL, Mancilla R, Arrellín G, Terrones H, Laclette JP, Terrones M (2006) Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett 6:1609–1616

    Article  CAS  Google Scholar 

  23. Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K (2006) Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci USA 103:3357–3362

    Article  CAS  Google Scholar 

  24. Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221

    Article  CAS  Google Scholar 

  25. Yi J-Y, Bernholc J (1993) Atomic structure and doping of microtubules. Phys Rev B 47:1708–1711

    Article  CAS  Google Scholar 

  26. Nevidomskyy AH, Czani G, Payne MC (2003) Chemically active substitutional nitrogen impurity in carbon nanotubes. Phys Rev Lett 91:105502-1–105502-4

    Article  Google Scholar 

  27. Saikia N, Deka RC (2012) First principles study on the boron–nitrogen domains segregated within (5,5) and (8,0) single-wall carbon nanotubes: formation energy, electronic structure and reactivity. Comput Theor Chem 996:11–20

    Article  CAS  Google Scholar 

  28. Cole ST, Eisenach KD, McMurray DN, Jacobs WR Jr (eds) (2005) Tuberculosis and the tubercle bacillus. ASM Press, Washington

    Google Scholar 

  29. World Health Organization (2011) Global tuberculosis control. World Health Organization, Geneva. ISBN: 978 92 4 156438 0

  30. Scroeder EK, de Souza ON, Santos DS, Blanchard JS, Basso LA (2002) Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr Pharm Biotechnol 3:197–225

    Article  Google Scholar 

  31. Du X, Wang W, Kim R, Yakota H, Nguyen H, Kim SH (2001) Crystal structure and mechanism of catalysis of a pyrazinamidase from Pyrococcus horikoshii. Biochemistry 40:14166–14172

    Article  CAS  Google Scholar 

  32. Lemaitre N, Callebaut I, Frenois F, Jarlier V, Sougakoff W (2001) Study of the structure-activity relationships for the pyrazinamidase (PncA) from Mycobacterium tuberculosis. Biochem J 353:453–458

    Article  CAS  Google Scholar 

  33. Vavríková E, Polanc S, Cevar MK, Smrlj JK, Horváti K, Bosze S, Stola ríková J, Imramovský A, Vin sová J (2011) New series of isoniazid hydrazones linked with electron-withdrawing substituents. Eur J Med Chem 46:5902–5909

    Article  Google Scholar 

  34. Maher D, Chaulet P, Spinaci S, Harries A (1997) Treatment of tuberculosis: guidelines for national programmes. World Health Organization, Geneva

    Google Scholar 

  35. Gallo M, Favila A, Glossman-Mitnik D (2007) DFT studies of functionalized carbon nanotubes and fullerenes as nanovectors for drug delivery of antitubercular compounds. Chem Phys Lett 447:105–109

    Article  CAS  Google Scholar 

  36. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  37. Parr RG, Yang W (1995) Density-functional theory of the electronic structure of molecules. Annu Rev Phys Chem 46:701–728

    Article  CAS  Google Scholar 

  38. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873

    Article  CAS  Google Scholar 

  39. Roy RK, Saha S (2010) Studies of regioselectivity of large molecular systems using DFT-based reactivity descriptors. Annu Rep Prog Chem Sect C 116:118–162

    Article  Google Scholar 

  40. Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford

    Google Scholar 

  41. Pauling L (1960) The nature of chemical bond. Cornell University Press, Ithaca

    Google Scholar 

  42. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85:3533–3543

    Article  CAS  Google Scholar 

  43. Pearson RG (1997) Chemical hardness: applications from molecules to solids. Wiley, Weinheim

    Book  Google Scholar 

  44. Mulliken RS (1934) Electronic structures of molecules. XI. Electroaffinity, molecular orbitals and dipole moments. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  45. Chis V, Pirnau A, Jurca T, Vasilescu M, Simon S, Cozar O, David L (2005) Experimental and DFT study of pyrazinamide. Chem Phys 316:153–163

    Article  CAS  Google Scholar 

  46. Saikia N, Deka RC (2012) Density functional study on the adsorption of the drug isoniazid onto pristine and B-doped single wall carbon nanotubes. J Mol Model 19(1):215–226. doi:10.1007/s00894-012-1534-9

    Article  Google Scholar 

  47. Saikia N, Rajkhowa S, Deka RC Structure and electronic properties of perfect and Si doped single-wall carbon nanotubes interacting with isoniazid—a density functional and molecular docking study (communicated)

  48. Lin Z, Wang YB (2003) Supramolecular interactions between fullerenes and porphyrins. J Am Chem Soc 125:6072–6073

    Article  Google Scholar 

  49. Improta R, Barone V, Kudin KN, Scusceria GE (2001) Structure and conformational behavior of biopolymers by density functional calculations employing periodic boundary conditions. I. The case of polyglycine, polyalanine, and poly-alpha-aminoisobutyric acid in vacuo. J Am Chem Soc 123:3311–3322

    Article  CAS  Google Scholar 

  50. de Leon A, Jalbout AF, Basuik VA (2008) SWNT–amino acid interactions: a theoretical study. Chem Phys Lett 457:185–190

    Article  Google Scholar 

  51. Sun W, Bu Y, Wang Y (2008) Interaction between glycine/glycine radicals and intrinsic/boron-doped (8,0) single-walled carbon nanotubes: a density functional theory study. J Phys Chem B 112:15442–15449

    Article  CAS  Google Scholar 

  52. Cao F, Ren W, Ji Y-M, Zhao C (2009) The structural and electronic properties of amine-functionalized boron nitride nanotubes via ammonia plasmas: a density functional theory study. Nanotechnology 20:145703

    Article  Google Scholar 

  53. Wu X, An W, Zeng XC (2006) Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups. J Am Chem Soc 128:12001–12006

    Article  CAS  Google Scholar 

  54. Shtogun YV, Woods LM, Dovbeshko GI (2007) Adsorption of adenine and thymine and their radicals on single-wall carbon nanotubes. J Phys Chem C 111:18174–18181

    Article  CAS  Google Scholar 

  55. Girifalco LA, Hodak M (2002) van der Waals binding energies in graphitic structures. Phys Rev B 65:125404-1–125404-5

    Article  Google Scholar 

  56. Henwood D, David Carey J (2007) Ab initio investigation of molecular hydrogen physisorption on graphene and carbon nanotubes. Phys Rev B 75:245413

    Article  Google Scholar 

Download references

Acknowledgments

Nabanita Saikia thanks The Council of Scientific and Industrial Research (CSIR), New Delhi, for the Senior Research Fellowship (SRF) and The Department of Science and Technology (DST), New Delhi, India for funding the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramesh C. Deka.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1623 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saikia, N., Deka, R.C. Adsorption of isoniazid and pyrazinamide drug molecules onto nitrogen-doped single-wall carbon nanotubes: an ab initio study. Struct Chem 25, 593–605 (2014). https://doi.org/10.1007/s11224-013-0327-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-013-0327-9

Keywords

Navigation