Skip to main content
Log in

Water and the Interior Structure of Terrestrial Planets and Icy Bodies

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

Water content and the internal evolution of terrestrial planets and icy bodies are closely linked. The distribution of water in planetary systems is controlled by the temperature structure in the protoplanetary disk and dynamics and migration of planetesimals and planetary embryos. This results in the formation of planetesimals and planetary embryos with a great variety of compositions, water contents and degrees of oxidation. The internal evolution and especially the formation time of planetesimals relative to the timescale of radiogenic heating by short-lived 26Al decay may govern the amount of hydrous silicates and leftover rock–ice mixtures available in the late stages of their evolution. In turn, water content may affect the early internal evolution of the planetesimals and in particular metal-silicate separation processes. Moreover, water content may contribute to an increase of oxygen fugacity and thus affect the concentrations of siderophile elements within the silicate reservoirs of Solar System objects. Finally, the water content strongly influences the differentiation rate of the icy moons, controls their internal evolution and governs the alteration processes occurring in their deep interiors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • J.D. Anderson, R.A. Jacobson, T.P. McElrath, W.B. Moore, G. Schubert, P.C. Thomas, Shape, mean radius, gravity field, and interior structure of Callisto. Icarus 153, 157–161 (2001)

    Article  ADS  Google Scholar 

  • J.D. Anderson, E.L. Lau, W.L. Sjogren, G. Schubert, W.B. Moore, Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996)

    Article  ADS  Google Scholar 

  • P.J. Armitage, Astrophysics of Planet Formation (Cambridge University Press, Cambridge, 2010), 294 p.

    Google Scholar 

  • Y. Asahara, T. Kubo, T. Kondo, Phase relations of a carbonaceous chondrite at lower mantle conditions. Phys. Earth Planet. Inter. 143–144, 421–432 (2004)

    Article  Google Scholar 

  • X-N. Bai, J.M. Stone, Wind-driven accretion in protoplanetary disks. I. Supression of the magnetorotational instability and launching of the magnetocentrifugal wind. Astrophys. J. 769, 21 (2013)

    Article  Google Scholar 

  • R.M. Baland et al., Titan’s internal structure inferred from its gravity field, shape, and rotation state. Icarus 237, 29–41 (2014)

    Article  ADS  Google Scholar 

  • A.C. Barr, R.M. Canup, Constraints on gas giant satellite formation from the interior states of partially differentiated satellites. Icarus 198, 163–177 (2008)

    Article  ADS  Google Scholar 

  • A.C. Barr, R.M. Canup, Origin of the Ganymede–Callisto dichotomy by impacts during the Late Heavy Bombardment. Nat. Geosci. 3, 164–167 (2010)

    Article  ADS  Google Scholar 

  • A.C. Barr, G.C. Collins, Tectonic activity on Pluto after the Charon-forming impact. Icarus 246, 146–155 (2015)

    Article  ADS  Google Scholar 

  • C. Béghin, O. Randriamboarison, M. Hamelin, E. Karkoschka, C. Sotin, R.C. Whitten, J.-J. Berthelier, R. Grard, F. Simões, Analytic theory of Titan’s Schumann resonance: constraints on ionospheric conductivity and buried water ocean. Icarus 218(2), 1028–1042 (2012)

    Article  ADS  Google Scholar 

  • P.A. Bland et al., Why aqueous alteration in asteroids was isochemical: high porosity does not equal permeability. Earth Planet. Sci. Lett. 287, 559–568 (2009)

    Article  ADS  Google Scholar 

  • R. Brett, P.M. Bell, Melting relations in the Fe-rich portion of the system Fe–FeS at 30 kb pressure. Earth Planet. Sci. Lett. 6, 479–482 (1969)

    Article  ADS  Google Scholar 

  • D. Breuer et al., Iron snow, crystal floats, and inner-core growth: modes of core solidification and implications for dynamos in terrestrial planets and moons. Prog. Earth Planet. Sci. 2, 39 (2015)

    Article  ADS  Google Scholar 

  • A.S. Buono, D. Walker, The Fe-rich liquidus in the Fe–FeS system from 1 bar to 10 GPa. Geochim. Cosmochim. Acta 75, 2072–2087 (2011)

    Article  ADS  Google Scholar 

  • O. Cadek, G. Tobie, T. Van Hoolst, M. Massé, G. Choblet, A. Lefèvre, G. Mitri, R-M. Baland, M. Behounkova, O. Bourgeois, A. Trinh, Enceladus’s internal ocean and ice shell constrained from Cassini gravity, shape, and libration data. Geophys. Res. Lett. 43(11), 5653–5660 (2016)

    Article  ADS  Google Scholar 

  • J.C. Castillo-Rogez, J.I. Lunine, Evolution of Titan’s rocky core constrained by Cassini observations. Geophys. Res. Lett. 37, L20205 (2010)

    ADS  Google Scholar 

  • J.C. Castillo-Rogez, E. Young, Origin and evolution of volatile-rich asteroids, in Early Differentiation and Consequences for Planets, ed. by L.T. Elkins-Tanton, B. Weiss. Cambridge Planetary Science (2017)

    Google Scholar 

  • F. Cerantola, N. Walte, D.C. Rubie, Deformation of a crystalline olivine aggregate containing two immiscible liquids: implications for early core-mantle differentiation. Earth Planet. Sci. Lett. 417, 67–77 (2015)

    Article  ADS  Google Scholar 

  • J.E. Chambers, Late-stage planetary accretion including hit-and-run collisions and fragmentation. Icarus 224, 43–56 (2013)

    Article  ADS  Google Scholar 

  • E. Chiang, A.N. Youdin, Forming planetesimals in solar and extrasolar nebula. Annu. Rev. Earth Planet. Sci. 38, 493–522 (2010)

    Article  ADS  Google Scholar 

  • G. Choblet, G. Tobie, C. Sotin, K. Kalousova, O. Grasset, Heat and melt transport in the high-pressure ice mantle of large icy moons. Icarus 285, 252–262 (2017)

    Article  ADS  Google Scholar 

  • L. Chudinovskikh, R. Boehler, Eutectic melting in the system Fe–S to 44 GPa. Earth Planet. Sci. Lett. 257(1), 97–103 (2007)

    Article  ADS  Google Scholar 

  • A.L. Cochran et al., The composition of comets. Space Sci. Rev. 197(1–4), 9–46 (2015)

    Article  ADS  Google Scholar 

  • A. Coradini, C. Federico, O. Forni, G. Magni, Origin and thermal evolution of icy satellites. Surv. Geophys. 16, 533–591 (1995)

    Article  ADS  Google Scholar 

  • A. Costa, L. Caricchi, N. Bagdassarov, A model for the rheology of particle-bearing suspensions and partially molten rocks. Geochem. Geophys. Geosyst. 10, 3010 (2009)

    Article  ADS  Google Scholar 

  • N.B. Cowan, D.S. Abbot, Water cycling between ocean and mantle: super-Earths need not be waterworlds. Astrophys. J. 781(1), 27 (2014).

    Article  ADS  Google Scholar 

  • F.J. Crary, F. Bagenal, Remanent ferromagnetism and the interior structure of Ganymede. J. Geophys. Res. 103, 25757–25773 (1998)

    Article  ADS  Google Scholar 

  • J.W. Crowley, M. Gérault, R.J. O’Connell, On the relative influence of heat and water transport on planetary dynamics. Earth Planet. Sci. Lett. 310, 380–388 (2011)

    Article  ADS  Google Scholar 

  • J.N. Cuzzi, K.J. Zahnle, Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts. Astrophys. J. 614, 490–496 (2004)

    Article  ADS  Google Scholar 

  • T.W. Dahl, D.J. Stevenson, Turbulent mixing of metal and silicate during planet accretion and interpretation of the Hf–W chronometer. Earth Planet. Sci. Lett. 295, 177–186 (2010)

    Article  ADS  Google Scholar 

  • N. Dauphas, The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017)

    Article  ADS  Google Scholar 

  • M.C. de Sanctis et al., Ammoniated phyllosilicates with a likely outer solar system origin on Ceres. Nature 528, 241–244 (2015)

    Article  ADS  Google Scholar 

  • J. de Vries, F. Nimmo, H.J. Melosh, S.A. Jacobson, A. Morbidelli, D.C. Rubie, Impact-induced melting during accretion of the Earth. Prog. Earth Planet. Sci. 3, 7 (2016). https://doi.org/10.1186/s40645-016-0083-8

    Article  ADS  Google Scholar 

  • R. Deguen, M. Landeau, P. Olson, Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014)

    Article  ADS  Google Scholar 

  • T. Encrenaz, Water in the solar system. Annu. Rev. Astron. Astrophys. 46, 57–87 (2008)

    Article  ADS  Google Scholar 

  • Y. Fei, C.M. Bertka, L.W. Finger, High-pressure iron-sulfur compound, Fe3S2, and melting relations in the Fe–FeS system. Science 275, 1621–1623 (1997)

    Article  Google Scholar 

  • Y. Fei, J. Li, C.M. Bertka, C.T. Prewitt, Structure type and bulk modulus of Fe3S, a new iron–sulfur compound. Am. Mineral. 85, 1830–1833 (2000)

    Article  ADS  Google Scholar 

  • F.M. Flasar, F. Birch, Energetics of core formation: a correction. J. Geophys. Res. 78, 6101–6103 (1973)

    Article  ADS  Google Scholar 

  • A.J. Friedson, D.J. Stevenson, Viscosity of rock–ice mixtures and applications to the evolution of icy satellites. Icarus 56, 1–14 (1983)

    Article  ADS  Google Scholar 

  • D.J. Frost, C. Liebske, F. Langenhorst, C.A. McCammon, R.G. Trønnes, D.C. Rubie, Experimental evidence for the existence of iron-rich metal in the Earth’s lower mantle. Nature 428, 409–412 (2004)

    Article  ADS  Google Scholar 

  • R.R. Fu, L.T. Elkins-Tanton, The fate of magmas in planetsimals and the retention of primitive chondritic crusts. Earth Planet. Sci. Lett. 390, 128–137 (2014)

    Article  ADS  Google Scholar 

  • R.R. Fu, E. Young, R.C. Greenwood, L.T. Elkins-Tanton, Silicate melting and volatile loss during differentiation in planetesimals, in Early Differentiation and Consequences for Planets, ed. by L.T. Elkins-Tanton, B. Weiss. Cambridge Planetary Science (2017)

    Google Scholar 

  • P. Gao, D.J. Stevenson, Nonhydrostatic effects and the determination of icy satellites’ moment of inertia. Icarus 226, 1185–1191 (2013)

    Article  ADS  Google Scholar 

  • T.V. Gerya, D.A. Yuen, Robust characteristics method for modelling multiphase visco-elasto-plastic thermo-mechanical problems. Phys. Earth Planet. Inter. 163, 83–105 (2007)

    Article  ADS  Google Scholar 

  • G.J. Golabek, B. Bourdon, T.V. Gerya, Numerical models of the thermomechanical evolution of planetesimals: application to the acapulcoite-lodranite parent body. Meteorit. Planet. Sci. 49, 1083–1099 (2014)

    Article  ADS  Google Scholar 

  • G.J. Golabek, T.V. Gerya, B.J.P. Kaus, R. Ziethe, P.J. Tackley, Rheological controls on the terrestrial core formation mechanism. Geochem. Geophys. Geosyst. 10, Q11007 (2009)

    Article  ADS  Google Scholar 

  • O. Grasset et al., Jupiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013)

    Article  ADS  Google Scholar 

  • O. Grasset, C. Sotin, The cooling rate of a liquid shell in Titan’s interior. Icarus 123, 101–112 (1996)

    Article  ADS  Google Scholar 

  • O. Grasset, C. Sotin, F. Deschamps, On the internal structure and dynamics of Titan. Planet. Space Sci. 48, 617–636 (2000)

    Article  ADS  Google Scholar 

  • L. Grossman, A.V. Fedkin, S.B. Simon, Formation of the first oxidized iron in the solar system. Meteorit. Planet. Sci. 47, 2160–2169 (2012)

    Article  ADS  Google Scholar 

  • W.M. Grundy et al., Surface compositions across Pluto and Charon. Science 351(6279), aad9189 (2016)

    Article  ADS  Google Scholar 

  • N.P. Hammond, A.C. Barr, E.M. Parmentier, Recent tectonic activity on Pluto driven by phase changes in the ice shell. Geophys. Res. Lett. 43(13), 6775–6782 (2016)

    Article  ADS  Google Scholar 

  • L. Hartmann, in Discs, Planetesimals, and Planets, ed. by F. Garzon, C. Eiroa, D. de Winter, T.J. Mahoney. ASP Conf. Ser., vol. 219 (Astron. Soc. Pac, San Francisco, 2000), p. 95

    Google Scholar 

  • T.I. Hasegawa, E. Herbst, C.M. Leung, Models of gas–grain chemistry in dense interstellar clouds with complex organic molecules. Astrophys. J. Suppl. Ser. 82, 167 (1992)

    Article  ADS  Google Scholar 

  • S.A. Hauck, J.M. Aurnou, A.J. Dombard, Sulfur’s impact on core evolution and magnetic field generation on Ganymede. J. Geophys. Res. 111(E9), E09008 (2006)

    Article  ADS  Google Scholar 

  • V.J. Hillgren, C.K. Gessmann, J. Li, An experimental perspective on the light element in Earth’s core, in Origin of the Earth and Moon, ed. by R.M. Canup, K. Righter (University of Arizona Press, Tucson, 2000), pp. 245–264

    Google Scholar 

  • M.M. Hirschmann, Water, melting, and the deep Earth H2O cycle. Annu. Rev. Earth Planet. Sci. 34, 629–653 (2006)

    Article  ADS  Google Scholar 

  • G. Hirth, D.L. Kohlstedt, Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere. Earth Planet. Sci. Lett. 144, 93–108 (1996)

    Article  ADS  Google Scholar 

  • A. Holzheid, Sulphide melt distribution in partially molten silicate aggregates: implications to core formation scenarios in terrestrial planets. Eur. J. Mineral. 25, 267–277 (2013)

    Article  ADS  Google Scholar 

  • A. Holzheid, M.D. Schmitz, T.L. Grove, Textural equilibria of iron sulphide liquids in partly molten silicate aggregates and their relevance to core formation scenarios. J. Geophys. Res. 105, 13555–13567 (2000)

    Article  ADS  Google Scholar 

  • A.W. Howard et al., Planet occurrence within 0.25 AU of solar-type stars from Kepler. Astrophys. J. Suppl. Ser. 201(2), 15 (2012)

    Article  ADS  Google Scholar 

  • H.H. Hsieh, D. Jewitt, A population of comets in the main asteroid belt. Science 312, 561–563 (2006)

    Article  ADS  Google Scholar 

  • H.-W. Hsu, F. Postberg, Y. Sekine et al., Ongoing hydrothermal activities within Enceladus. Nature 519, 207–210 (2015)

    Article  ADS  Google Scholar 

  • H. Hussmann et al., Subsurface oceans and deep interiors of medium-sized outer planet satellites and large trans-neptunian objects. Icarus 185, 258–273 (2006)

    Article  ADS  Google Scholar 

  • H. Hussmann, C. Sotin, J.I. Lunine, Interiors and evolution of icy satellites, in Physics of Terrestrial Planets and Moons Treatise on Geophysics, vol. 10, 2nd edn. (Elsevier, Amsterdam, 2015), pp. 605–635

    Google Scholar 

  • L. Iess et al., Gravity field, shape, and moment of inertia of Titan. Science 327, 1367–1369 (2010)

    Article  ADS  Google Scholar 

  • L. Iess et al., The tides of Titan. Science 337, 457 (2012)

    Article  ADS  Google Scholar 

  • L. Iess et al., The gravity field and interior structure of Enceladus. Science 344, 78–80 (2014)

    Article  ADS  Google Scholar 

  • S.A. Jacobson, A. Morbidelli, S.N. Raymond, D.P. O’Brien, K.J. Walsh, D.C. Rubie, Highly siderophile elements in the Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014)

    Article  ADS  Google Scholar 

  • D. Jewitt, B. Yang, N. Haghighipour, Main-belt Comet P/2008 R1 (Garradd). Astron. J. 137, 4313–4321 (2009)

    Article  ADS  Google Scholar 

  • A. Johansen, M.-M. Mac Low, P. Lacerda, M. Bizzarro, Growth of asteroids, planetary embryos, and Kuiper belt objects by chondrule accretion. Sci. Adv. 1, 1500109 (2015)

    Article  ADS  Google Scholar 

  • S. Kamada, H. Terasaki, E. Ohtani, T. Sakai, T. Kikegawa, Y. Ohishi, N. Hirao, N. Sata, T. Kondo, Phase relationships of the Fe–FeS system in conditions up to the Earth’s outer core. Earth Planet. Sci. Lett. 294(1), 94–100 (2010)

    Article  ADS  Google Scholar 

  • S. Karato, V.R. Murthy, Core formation and chemical equilibrium in the Earth—I. Physical considerations. Phys. Earth Planet. Inter. 100, 61–79 (1997)

    Article  ADS  Google Scholar 

  • J.S. Kargel, Ammonia±water volcanism on icy satellites: phase relations at 1 atmosphere. Icarus 100, 556–574 (1992)

    Article  ADS  Google Scholar 

  • R.F. Katz, M. Spiegelman, C.H. Langmuir, A new parameterization of hydrous mantle melting. Geochem. Geophys. Geosyst. 4 (2003). https://doi.org/10.1029/2002GC000433

  • Y. Ke, V.S. Solomatov, Coupled core-mantle thermal evolution of early Mars. J. Geophys. Res. 114, E07004 (2009)

    Article  ADS  Google Scholar 

  • J.D. Kendall, H.J. Melosh, Differentiated planetesimal impacts into a terrestrial magma ocean: fate of the iron core. Earth Planet. Sci. Lett. 448, 24–33 (2016)

    Article  ADS  Google Scholar 

  • J.F. Kerridge, T.E. Bunch, in Asteroids, ed. by T. Gehrels (University of Arizona Press, Tucson, 1979), pp. 745–764

    Google Scholar 

  • K.K. Khurana, M.G. Kivelson, D.J. Stevenson, G. Schubert, C.T. Russell, R.J. Walker, S. Joy, C. Polanskey, Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998)

    Article  ADS  Google Scholar 

  • R.L. Kirk, D.J. Stevenson, Thermal evolution of a differentiated Ganymede and implications for surface features. Icarus 69, 91–134 (1987)

    Article  ADS  Google Scholar 

  • M.G. Kivelson et al., Ganymede’s magnetosphere: magnetometer overview. J. Geophys. Res. 103, 19,963–19,972 (1998)

    Article  ADS  Google Scholar 

  • M.G. Kivelson, K.K. Khurana, C.T. Russell, M. Volwerk, R.J. Walker, C. Zimmer, Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289, 1340–1343 (2000)

    Article  ADS  Google Scholar 

  • M. Kivelson, K. Khurana, C. Russell, R. Walker, J. Warnecke, F. Coroniti, C. Polanskey, D. Southwood, G. Schubert, Discovery of Ganymede’s magnetic field by the Galileo spacecraft. Nature 384(6609), 537–541 (1996)

    Article  ADS  Google Scholar 

  • J. Korenaga, Scaling of plate-tectonic convection with pseudoplastic rheology. J. Geophys. Res. 115, B11405 (2010)

    Article  ADS  Google Scholar 

  • K.J. Kossacki, J. Leliwa-Kopystynski, Medium-sized icy satellites: thermal and structural evolution during accretion. Planet. Space Sci. 41, 729–741 (1993)

    Article  ADS  Google Scholar 

  • A.N. Krot et al., Progressive alteration in CV3 chondrites: more evidence for asteroidal alteration. Meteorit. Planet. Sci. 33, 1065–1085 (1998)

    Article  ADS  Google Scholar 

  • A.N. Krot, B. Fegley, K. Lodders, Meteoritical and astrophysical constraints on the oxidation state of the solar nebula, in Protostars and Planets IV, ed. by V. Mannings, A.P. Boss, S.S. Russell (University of Arizona Press, Tucson, 2000), pp. 1019–1054

    Google Scholar 

  • M. Küppers et al., Localized sources of water vapour on the dwarf planet (1) Ceres. Nature 505, 525–527 (2014)

    Article  ADS  Google Scholar 

  • M. Landeau, P. Olson, R. Deguen, B.H. Hirsh, Core merging and stratification following giant impact. Nat. Geosci. 9, 786–789 (2016)

    Article  ADS  Google Scholar 

  • J.S. Lewis, Satellites of the outer planets: their physical and chemical nature. Icarus 15, 174–185 (1971)

    Article  ADS  Google Scholar 

  • J. Li, Y. Fei, H. Mao, K. Hirose, S. Shieh, Sulfur in the Earth’s inner core. Earth Planet. Sci. Lett. 193(3), 509–514 (2001)

    Article  ADS  Google Scholar 

  • T. Lichtenberg, G.J. Golabek, T.V. Gerya, M.R. Meyer, The effects of short-lived radionuclides and porosity on the early thermo-mechanical evolution of planetesimals. Icarus 274, 350–365 (2016)

    Article  ADS  Google Scholar 

  • C. Liebske, B. Schmickler, H. Terasai, B.T. Poe, A. Suzuki, K. Funakoshi, R. Ando, D.C. Rubie, Viscosity of peridotite liquid up to 13 GPa: implications for magma ocean viscosities. Earth Planet. Sci. Lett. 240, 589–604 (2005)

    Article  ADS  Google Scholar 

  • U. Malamud, D. Prialnik, Modeling Kuiper belt objects Charon, Orcus and Salacia by means of a new equation of state for porous icy bodies. Icarus 246, 21–36 (2015)

    Article  ADS  Google Scholar 

  • U. Mann, D.J. Frost, D.C. Rubie, Evidence for high-pressure core-mantle differentiation from the metal-silicate partitioning of lithophile and weakly siderophile elements. Geochim. Cosmochim. Acta 73, 7360–7386 (2009). https://doi.org/10.1016/j.gca.2009.08.006

    Article  ADS  Google Scholar 

  • G.W. Marcy et al., Masses, radii, and orbits of small Kepler planets: the transition from gaseous to rocky planets. Astrophys. J. Suppl. Ser. 210(2), 20 (2014)

    Article  ADS  Google Scholar 

  • T. Matsui, Y. Abe, Evolution of an impact-induced atmosphere and magma ocean on the accreting Earth. Nature 319, 303–305 (1986)

    Article  ADS  Google Scholar 

  • M. Mayor, C. Lovis, N.C. Santos, Doppler spectroscopy as a path to the detection of Earth-like planets. Nature 513, 328–335 (2014)

    Article  ADS  Google Scholar 

  • W.B. McKinnon, Core evolution in the icy Galilean satellites, and the prospects for dynamo-generated magnetic fields. Bull. Am. Astron. Soc. 28, 1076 (1996)

    ADS  Google Scholar 

  • W.B. McKinnon, Note: mystery of Callisto: is it undifferentiated? Icarus 130, 540–543 (1997)

    Article  ADS  Google Scholar 

  • W.G. Minarik, F.J. Ryerson, E.B. Watson, Textural entrapment of core-forming melts. Science 272, 530–533 (1996)

    Article  ADS  Google Scholar 

  • G. Mitri et al., Shape, topography, gravity anomalies and tidal deformation of Titan. Icarus 236, 169–177 (2014)

    Article  ADS  Google Scholar 

  • J. Monteux, N. Coltice, F. Dubuffet, Y. Ricard, Thermo-mechanical adjustment after impacts during planetary growth. Geophys. Res. Lett. 34, L24201 (2007)

    Article  ADS  Google Scholar 

  • J. Monteux, G. Tobie, G. Choblet, M. Le Feuvre, Can large icy moons accrete undifferentiated? Icarus 237, 377–387 (2014)

    Article  ADS  Google Scholar 

  • J.M. Moore et al., The geology of Pluto and Charon through the eyes of New Horizons. Science 351, 6279 (2016)

    Article  Google Scholar 

  • G. Morard, D. Andrault, N. Guignot, C. Sanloup, M. Mezouar, S. Petitgirard et al., In situ determination of Fe–Fe3S phase diagram and liquid structural properties up to 65 GPa. Earth Planet. Sci. Lett. 272, 620–662 (2008)

    Article  ADS  Google Scholar 

  • A. Morbidelli, B. Bitsch, A. Crida, M. Gounelle, T. Guillot, S. Jacobson, A. Johansen, M. Lambrechts, E. Lega, Fossilized condensation lines in the Solar System protoplanetary disk. Icarus 267, 368–376 (2016)

    Article  ADS  Google Scholar 

  • I. Mosqueira, P.R. Estrada, Formation of the regular satellites of giant planets in an extended gaseous nebula. I: subnebula model and accretion of satellites. Icarus 163, 198–231 (2003)

    Article  ADS  Google Scholar 

  • O. Mousis, A. Drouard, P. Vernazza, J.I. Lunine, M. Monnereau, R. Maggiolo, K. Altwegg, H. Balsiger, J.-J. Berthelier, G. Cessateur, J. De Keyser, S.A. Fuselier, S. Gasc, A. Korth, T. Le Deun, U. Mall, B. Marty, H. Rème, M. Rubin, C.-Y. Tzou, J.H. Waite, P. Wurz, Impact of radiogenic heating on the formation conditions of comet 67P/Churyumov–Gerasimenko. Astrophys. J. Lett. 839, L4 (2017)

    Article  ADS  Google Scholar 

  • S. Mueller, W.B. McKinnon, Three-layered models of Ganymede and Callisto—compositions, structures, and aspects of evolution. Icarus 76, 437–464 (1988)

    Article  ADS  Google Scholar 

  • K. Nagel, D. Breuer, T. Spohn, A model for the interior structure, evolution, and differentiation of Callisto. Icarus 169, 402–412 (2004)

    Article  ADS  Google Scholar 

  • T. Nakamura, Yamato 793321 CM chondrite: dehydrated regolith material of a hydrous asteroid. Earth Planet. Sci. Lett. 242, 26–38 (2006)

    Article  ADS  Google Scholar 

  • A. Nakato, T. Nakamura, F. Kitajima, T. Noguchi, Evaluation of dehydration mechanism during heating of hydrous asteroids based on mineralogical and chemical analysis of naturally and experimentally heated CM chondrites. Earth Planets Space 60, 855–864 (2008)

    Article  ADS  Google Scholar 

  • H.B. Niemann et al., Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini–Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. 115, E12006 (2010)

    Article  ADS  Google Scholar 

  • F. Nimmo, D. O’Brien, T. Kleine, Tungsten isotopic evolution during late-stage accretion: constraints on Earth–Moon equilibration. Earth Planet. Sci. Lett. 292, 363–370 (2010)

    Article  ADS  Google Scholar 

  • D.P. O’Brien, K.J. Walsh, A. Morbidelli, S.N. Raymond, A.M. Mandell, Water delivery and giant impacts in the ‘Grand Tack’ scenario. Icarus 239, 74–84 (2014). https://doi.org/10.1016/j.icarus.2014.05.009

    Article  ADS  Google Scholar 

  • E. Ohtani, N. Hirao, T. Kondo, M. Ito, T. Kikegawa, Iron–water reaction at high pressure and temperature, and hydrogen transport into the core. Phys. Chem. Miner. 32, 77–82 (2005)

    Article  ADS  Google Scholar 

  • T. Okuchi, Hydrogen partitioning into molten iron at high pressure: implications for Earth’s core. Science 278, 1781–1784 (1997)

    Article  ADS  Google Scholar 

  • H.St.C. O’Neill, D.C. Rubie, D. Canil, C.A. Geiger, C.R. Ross II., F. Seifert, A.B. Woodland, Ferric iron in the upper mantle and in transition zone assemblages: implications for relative oxygen fugacities in the mantle, in Evolution of the Earth and Planets, ed. by E. Takahashi, R. Jeanloz, D.C. Rubie. Geophysical Monograph, vol. 74, IUGG 14 (1993), pp. 73–88

    Google Scholar 

  • P. O’Rourke, D.J. Stevenson, Stability of ice/rock mixtures with application to a partially differentiated Titan. Icarus 227, 67–77 (2014)

    Article  ADS  Google Scholar 

  • R.T. Pappalardo, G.C. Collins, J.W. Head III., P. Helfenstein, T.B. McCord, J.M. Moore, L.M. Prockter, P.M. Schenk, J.R. Spencer, Geology of Ganymede, in Jupiter: The Planet, Satellites and Magnetosphere, ed. by F. Bagenal, T.E. Dowling, W.B. McKinnon. Cambridge Planetary Science (2004), pp. 363–396

    Google Scholar 

  • C.C. Porco et al., Cassini observes the active South Pole of Enceladus. Science 311, 1393–1401 (2006)

    Article  ADS  Google Scholar 

  • F. Postberg et al., Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus. Nature 459, 1098–1101 (2009)

    Article  ADS  Google Scholar 

  • F. Postberg, J. Schmidt, J. Hillier, S. Kempf, R. Srama, A salt-water reservoir as the source of a compositionally stratified plume on Enceladus. Nature 474, 620–622 (2011)

    Article  ADS  Google Scholar 

  • D. Prialnik, G. Sarid, E.D. Rosenberg, R. Merk, Thermal and chemical evolution of comet nuclei and Kuiper belt objects. Space Sci. Rev. 138, 147–164 (2008)

    Article  ADS  Google Scholar 

  • S.N. Raymond, A. Izidoro, Origin of water in the inner Solar System: planetesimals scattered inward during Jupiter and Saturn’s rapid gas accretion. Icarus (2017). https://doi.org/10.1016/j.icarus.2017.06.030

    Google Scholar 

  • S.N. Raymond, D.P. O’Brien, A. Morbidelli, N.A. Kaib, Building the terrestrial planets: constrained accretion in the inner Solar System. Icarus 203, 644–662 (2009)

    Article  ADS  Google Scholar 

  • S.N. Raymond, T. Quinn, J.I. Lunine, Making other earths: dynamical simulations of terrestrial planet formation and water delivery. Icarus 168, 1–17 (2004)

    Article  ADS  Google Scholar 

  • Y. Ricard, O. Šrámek, F. Dubuffet, A multi-phase model of runaway core-mantle segregation in planetary embryos. Earth Planet. Sci. Lett. 284, 144–150 (2009)

    Article  ADS  Google Scholar 

  • G. Robuchon, F. Nimmo, Thermal evolution of Pluto and implications for surface tectonics and a subsurface ocean. Icarus 216(2), 426–439 (2011)

    Article  ADS  Google Scholar 

  • L. Roth et al., Transient water vapor at Europa’s South pole. Science 343, 171 (2014)

    Article  ADS  Google Scholar 

  • D.C. Rubie, D.J. Frost, U. Mann, Y. Asahara, K. Tsuno, F. Nimmo, P. Kegler, A. Holzheid, H. Palme, Heterogeneous accretion, composition and core-mantle differentiation of the Earth. Earth Planet. Sci. Lett. 301, 31–42 (2011). https://doi.org/10.1016/j.epsl.2010.11.030

    Article  ADS  Google Scholar 

  • D.C. Rubie, S.A. Jacobson, A. Morbidelli, D.P. O’Brien, E.D. Young, J. de Vries, F. Nimmo, H. Palme, D.J. Frost, Accretion and differentiation of the terrestrial planets with implications for the compositions of early-formed Solar System bodies and accretion of water. Icarus 248, 89–108 (2015a)

    Article  ADS  Google Scholar 

  • D.C. Rubie, V. Laurenz, S.A. Jacobson, A. Morbidelli, H. Palme, A.K. Vogel, D.J. Frost, Highly siderophile elements were stripped from Earth’s mantle by iron sulfide segregation. Science 353, 1141–1144 (2016)

    Article  ADS  Google Scholar 

  • D.C. Rubie, H.J. Melosh, J.E. Reid, C. Liebske, K. Righter, Mechanisms of metal-silicate equilibration in the terrestrial magma ocean. Earth Planet. Sci. Lett. 205, 239–255 (2003)

    Article  ADS  Google Scholar 

  • D.C. Rubie, F. Nimmo, H.J. Melosh, Formation of the Earth’s core, in Treatise on Geophysics, ed. by D. Stevenson. Evolution of the Earth, vol. 9, 2nd edn. (Elsevier, Amsterdam, 2015b), pp. 43–79

    Chapter  Google Scholar 

  • J. Rudge, T. Kleine, B. Bourdon, Broad bounds on Earth’s accretion and core formation constrained by geochemical models. Nat. Geosci. 3, 439–443 (2010)

    Article  ADS  Google Scholar 

  • T. Rushmer, N. Petford, Microsegregation rates of liquid Fe–Ni–S metal in natural silicate-metal systems: a combined experimental and numerical study. Geochem. Geophys. Geosyst. 12 (2011). https://doi.org/10.1029/2010GC003413

  • H. Samuel, A re-evaluation of metal diapir breakup and equilibration in terrestrial magma oceans. Earth Planet. Sci. Lett. 313, 105–114 (2012)

    Article  ADS  Google Scholar 

  • H. Samuel, P.J. Tackley, M. Evonuk, Heat partitioning in terrestrial planets during core formation by negative diapirism. Phys. Earth Planet. Inter. 290, 13–19 (2010)

    Article  Google Scholar 

  • J. Saur et al., The search for a subsurface ocean in Ganymede with Hubble Space Telescope observations of its auroral ovals. J. Geophys. Res. Space Phys. 120 (2015)

  • L. Schaefer, D. Sasselov, The persistence of oceans on Earth-like planets: insights from the deep-water cycle. Astrophys. J. 801(1), 40 (2015)

    Article  ADS  Google Scholar 

  • A. Scheinberg, R.R. Fu, L.T. Elkins-Tanton, B.P. Weiss, Asteroid differentiation: melting and large-scale structure, in Asteroids IV, ed. by P. Michel, F.E. DeMeo, W.F. Bottke (University of Arizona Press, Tucson, 2015), pp. 533–552

    Google Scholar 

  • M. Schönbächler, R.W. Carlson, M.F. Horan, T.D. Mock, E.H. Hauri, Heterogeneous accretion and the moderately volatile element budget of Earth. Science 328, 884–887 (2010). https://doi.org/10.1126/science.1186239

    Article  ADS  Google Scholar 

  • G. Schubert, H. Hussmann, V. Lainey, D.L. Matson, W.B. McKinnon, F. Sohl, C. Sotin, G. Tobie, D. Turrini, T. Van Hoolst, Evolution of icy satellites. Space Sci. Rev. 153(1), 447–484 (2010)

    Article  ADS  Google Scholar 

  • G. Schubert, T. Spohn, R.T. Reynolds, Thermal histories, compositions and internal structures of the moons of the solar system, in Satellites, ed. by J.A. Burns, M.S. Matthews (University of Arizona Press, Tucson, 1986), pp. 224–292

    Google Scholar 

  • G. Schubert, D.J. Stevenson, K. Ellsworth, Internal structures of the Galilean satellites. Icarus 47, 46–59 (1981)

    Article  ADS  Google Scholar 

  • H.P. Scott, Q. Williams, F.J. Ryerson, Experimental constraints on the chemical evolution of large icy satellites. Earth Planet. Sci. Lett. 203, 399–412 (2002)

    Article  ADS  Google Scholar 

  • Y. Sekine et al., High-temperature water–rock interactions and hydrothermal environments in the chondrite-like core of Enceladus. Nat. Commun. 6, 8604 (2015)

    Article  Google Scholar 

  • Y. Sekine, H. Genda, S. Kamata, T. Funatsu, The Charon-forming giant impact as a source of Pluto’s dark equatorial regions. Nat. Astron. 1, 0031 (2017)

    Article  ADS  Google Scholar 

  • N.I. Shakura, R.A. Sunyaev, Black holes in binary systems. Observational appearance. Astron. Astrophys. 24, 337–355 (1973)

    ADS  Google Scholar 

  • Z.D. Sharp, F.M. McCubbin, C.K. Shearer, A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013)

    Article  ADS  Google Scholar 

  • Y. Shibazaki, E. Ohtani, H. Terasaki, A. Suzuki, K. Funakoshi, Hydrogen partitioning between iron and ringwoodite: implications for water transport into the Martian core. Earth Planet. Sci. Lett. 287, 463–470 (2009)

    Article  ADS  Google Scholar 

  • J.B. Simon, P.J. Armitage, R. Li, A.N. Youdin, The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016)

    Article  ADS  Google Scholar 

  • F. Sohl et al., Subsurface water oceans on icy satellites: chemical composition and exchange processes. Space Sci. Rev. 153, 485–510 (2010)

    Article  ADS  Google Scholar 

  • V.S. Solomatov, Magma oceans and primordial mantle differentiation, in Treatise on Geophysics, 2nd edn. (2015), pp. 81–104

    Chapter  Google Scholar 

  • C. Sotin, G. Mitri, N. Rappaport, G. Schubert, D. Stevenson, in Titan from Cassini/Huygens, ed. by R.H. Brown, J.P. Lebreton, J.H. Waite (2009a), pp. 61–73

    Chapter  Google Scholar 

  • C. Sotin, G. Tobie, J. Wahr, W.B. McKinnon, in Tides and Tidal Heating on Europa, ed. by R. Pappalardo et al., Space Science Series (University of Arizona Press, Tucson, 2009b), pp. 85–117

    Google Scholar 

  • S.W. Squyres, R.T. Raynolds, A.L. Summers, F. Shung, Accretional heating of the satelites of Saturn and Uranus. J. Geophys. Res. 93, 8779–8794 (1988)

    Article  ADS  Google Scholar 

  • D.J. Stevenson, Fluid dynamics of core formation, in The Origin of the Earth, ed. by H.E. Newsom, J.H. Jones (Oxford University Press, London, 1990), pp. 231–249

    Google Scholar 

  • R. Tajeddine, N. Rambaux, V. Lainey, S. Charnoz, A. Richard, A. Rivoldini, B. Noyelles, Constraints on Mimas’ interior from Cassini ISS libration measurements. Science 346(6207), 322–324 (2014)

    Article  ADS  Google Scholar 

  • H. Terasaki, D.J. Frost, D.C. Rubie, F. Langenhorst, The effect of oxygen and sulphur on the dihedral angle between Fe–O–S melt and silicate minerals at high pressure: implications for Martian core formation. Earth Planet. Sci. Lett. 232, 379–392 (2005). https://doi.org/10.1016/j.epsl.2005.01.030

    Article  ADS  Google Scholar 

  • H. Terasaki, D.J. Frost, D.C. Rubie, F. Langenhorst, Percolative core formation in planetesimals. Earth Planet. Sci. Lett. 273, 132–137 (2008)

    Article  ADS  Google Scholar 

  • P.C. Thomas et al., Enceladus’s measured physical libration requires a global subsurface ocean. Icarus 264, 37–47 (2016)

    Article  ADS  Google Scholar 

  • G. Tobie, J.I. Lunine, J. Monteux, O. Mousis, F. Nimmo, The origin and evolution of Titan, in: Titan: Surface, Atmosphere and Magnetosphere, ed. by I. Mueller-Wodarg, C. Griffith, T. Cravens, E. Lellouch (Cambridge University Press, Cambridge, 2013)

    Google Scholar 

  • K.A. Todd, H.C. Watson, T. Yu, Y. Wang, The effects of shear deformation on planetesimal core segregation: results from in-situ X-ray micro-tomography. Am. Mineral. 101, 1996–2004 (2016)

    Article  ADS  Google Scholar 

  • T.M. Usselman, Experimental approach to the state of the core. Part I. The liquidus relations of the Fe-rich portion of the Fe–Ni–S system. Am. J. Sci. 275, 278–290 (1975)

    Article  ADS  Google Scholar 

  • S. Vance, J.M. Brown, Thermodynamic properties of aqueous MgSO4 to 800 MPa at temperatures from −20 to \(100\,{}^{\circ}\)C and concentrations to 25 mol kg−1 from sound speeds, with applications to icy world oceans. Geochim. Cosmochim. Acta 110, 176–189 (2013)

    Article  ADS  Google Scholar 

  • N. von Bargen, H.S. Waff, Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures. J. Geophys. Res. 91, 9261–9276 (1986)

    Article  ADS  Google Scholar 

  • J.-B. Wacheul, M. Le Bars, J. Monteux, J.M. Aurnou, Laboratory experiments on the breakup of liquid metal diapirs. Earth Planet. Sci. Lett. 403, 236–245 (2014)

    Article  ADS  Google Scholar 

  • J. Wade, B.J. Wood, Core formation and the oxidation state of the Earth. Earth Planet. Sci. Lett. 236, 78–95 (2005)

    Article  ADS  Google Scholar 

  • K.J. Walsh, A. Morbidelli, S.N. Raymond, D.P. O’Brien, A.M. Mandell, A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475, 206–209 (2011)

    Article  ADS  Google Scholar 

  • M.J. Walter, E. Cottrell, Assessing uncertainty in geochemical models for core formation in Earth. Earth Planet. Sci. Lett. 365, 165–176 (2013)

    Article  ADS  Google Scholar 

  • K. Willacy, H.H. Klahr, T.J. Millar, Th. Henning, Gas and grain chemistry in a protoplanetary disk. Astron. Astrophys. 338, 995–1005 (1998)

    ADS  Google Scholar 

  • B.J. Wood, M.J. Walter, J. Wade, Accretion of the Earth and segregation of its core. Nature 441, 825–833 (2006). https://doi.org/10.1038/nature04763

    Article  ADS  Google Scholar 

  • T. Yoshino, M.J. Walter, T. Katsura, Core formation in planetesimals triggered by permeable flow. Nature 422, 154–157 (2003)

    Article  ADS  Google Scholar 

  • E.D. Young, The hydrology of carbonaceous chondrite parent bodies and the evolution of planet progenitors. Philos. Trans. R. Soc. Lond. A 359, 2095–2110 (2001)

    Article  ADS  Google Scholar 

  • E.D. Young, R.D. Ash, P. England, D. Rumble III, Fluid flow in chondrite parent bodies: deciphering the compositions of planetesimals. Science 286, 1331–1335 (1999)

    Article  ADS  Google Scholar 

  • E. Young, K. Zhang, G. Schubert, Conditions for pore water convection within carbonaceous chondrite parent bodies—implications for planetesimal size and heat production. Earth Planet. Sci. Lett. 213, 249–259 (2003)

    Article  ADS  Google Scholar 

  • K. Zhang, K.M. Pontoppidan, C. Salyk, G.A. Blake, Evidence for a snow line beyond the transitional radius in the TW Hya protoplanetary disk. Astrophys. J. 766, 82 (2013)

    Article  ADS  Google Scholar 

  • M.E. Zolensky, W.L. Bourcier, J.L. Gooding, Aqueous alteration on the hydrous asteroids: results of EQ3/6 computer simulations. Icarus 78, 411–425 (1989)

    Article  ADS  Google Scholar 

  • M.Y. Zolotov, J.S. Kargel, On the composition of Europa’s icy shell, ocean and underlying rocks, in Europa, ed. by R. Pappalardo, W.B. McKinnon, K. Khurana (University of Arizona Press, Tucson, 2009), pp. 431–457

    Google Scholar 

Download references

Acknowledgements

We thank L. Elkins-Tanton, A. Morbidelli and two anonymous reviewers for detailed and thoughtful comments that helped to improve the manuscript. D.C.R. was supported by the European Research Council Advanced Grant “ACCRETE” (contract number 290568) and additional support was provided by the German Science Foundation (DFG) Priority Programme SPP1833 “Building a Habitable Earth” (Ru 1323/10-1). J.M. was funded by the Auvergne Fellowship program. This is Laboratory of Excellence ClerVolc contribution no. 283. G.J.G. thanks Taras Gerya for providing the code I2MART. G.T. acknowledges support from the project ANR OASIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Monteux.

Additional information

The Delivery of Water to Protoplanets, Planets and Satellites

Edited by Michel Blanc, Allessandro Morbidelli, Yann Alibert, Lindy Elkins-Tanton, Paul Estrada, Keiko Hamano, Helmut Lammer, Sean Raymond and Maria Schönbächler

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monteux, J., Golabek, G.J., Rubie, D.C. et al. Water and the Interior Structure of Terrestrial Planets and Icy Bodies. Space Sci Rev 214, 39 (2018). https://doi.org/10.1007/s11214-018-0473-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11214-018-0473-x

Keywords

Navigation