Skip to main content
Log in

Effective Size of the Early-Run Sockeye Salmon Oncorhynchus nerka Population of Lake Azabach’e, Kamchatka Peninsula Evaluation of the Effect of Interaction between Subpopulations within a Subdivided Population

  • Animal Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The effect of subdivision on the effective size (N e) of the early-run sockeye salmon Oncorhynchus nerka population of Lake Azabach’e (Kamchatka Peninsula) has been studied. The mode of this effect is determined by the relative productivity of the subpopulations and its magnitude, by the rate of individual migration among subpopulations and genetic differentiation. If the contributions of subpopulations (offspring numbers) are different, genetic differentiation can reduce the N e of the subdivided population. At equal subpopulation contributions, genetic differentiation always increases the N e of the subdivided population in comparison with a panmictic population. We have found that all sockeye salmon subpopulations of Azabach’e Lake produce equal offspring numbers contributing to the next generation. The genetic differentiation between sockeye salmon subpopulations is low, and the subdivision increases the N e of the early-run race with reference to the sum of the effective sizes of the subpopulations by as little as 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Efremov, V.V. and Parenskii, V.A., Effective Size of Subpopulations in Early-Run Sockeye Salmon Oncorhynchus nerka from Azabech’e Lake (Kamchatka): The Effect of Density on Variance of Reproductive Success, Rus. J. Genet., 2004, vol. 40, no.4, pp. 431–436.

    Article  CAS  Google Scholar 

  2. Efremov, V.V., Effective Size of Subpopulations in Early-Run Sockeye Salmon Oncorhynchus nerka from Azabech’e Lake (Kamchatka): The Effect of Relative Reproductive Success of Different-Year Cohorts, Rus. J. Genet., 2004, vol. 40, no.5, pp. 524–529.

    Article  CAS  Google Scholar 

  3. Konovalov, S.M., Populyatsionnaya biologiya tikhookeanskikh lososei (Population Biology of Pacific Salmon), Leningrad: Nauka, 1980.

    Google Scholar 

  4. Glubokovsky, M.K., Evolyutsionnaya biologiya lososevykh ryb (Evolutionary Biology of Salmonids), Moscow: Nauka, 1995.

    Google Scholar 

  5. Altukhov, Yu.P., Salmenkova, E.A., and Omel’chenko, V.T., Populyatsionnaya genetika lososevykh ryb (Population Genetics of Salmonids), Moscow: Nauka, 1997.

    Google Scholar 

  6. Il’in, V.E., Konovalov, S.M., and Shevlyakov, A.G., Coefficient of Migration and the Spatial Structure of Pacific Salmon, in Biologicheskie osnovy razvitiya lososevogo khozyaistva v vodoemakh SSSR (Biological Basis for the Development of Salmon Farming in Water Bodies of the USSR), Moscow: Nauka, 1983, pp. 9–18.

    Google Scholar 

  7. Semenchenko, N.N. and Ostrovskii, V.I., Migration of Sockeye Salmon Oncorhynchus nerka Spawners from Individual Subisolates of Azabach’e Lake (Kamchatka) in Years of High Population Sizes, Vopr. Ikhtiol., 2001, no. 1, pp. 42–46.

  8. Wright, S., Isolation by Distance, Genetics, 1943, vol. 28, pp. 114–138.

    Google Scholar 

  9. Kimura, M., Stepping-Stone Model of Population, Ann. Rep. Nat. Inst. Genet., 1953, vol. 3, pp. 63–65.

    Google Scholar 

  10. Nei, N. and Takahata, N., Effective Population Size, Genetic Diversity and Coalescence Time in Subdivided Populations, J. Mol. Evol., 1993, vol. 37, pp. 240–244.

    Article  CAS  PubMed  Google Scholar 

  11. Wang, J. and Caballero, A., Developments in Predicting the Effective Size of Subdivided Populations, Heredity, 1999, vol. 82, pp. 212–226.

    Article  Google Scholar 

  12. Maruyama, T., On the Rate of Decrease of Heterozygosity in Circular Stepping-Stone Models of Populations, Theor. Pop. Biol., 1970, vol. 1, pp. 101–119.

    Article  CAS  Google Scholar 

  13. Whitlock, M. and Barton, N., The Effective Size of a Subdivided Population, Genetics, 1997, vol. 146, pp. 427–441.

    CAS  PubMed  Google Scholar 

  14. http://www.statsoft.com

  15. Varnavskaya, N.V., Wood, C.C., Everett, R.J., et al., Genetic Differentiation of Subpopulations of Sockeye Salmon (Oncorhynchus nerka) within Lakes of Alaska, British Columbia, and Kamchatka, Russia, Can. J. Fish. Aquat. Sci., 1994, vol. 51,suppl., pp. 147–157.

    CAS  Google Scholar 

  16. Allendorf, F.W. and Seeb, L.W., Concordance of Genetic Divergence among Sockeye Salmon Populations at Allozyme, Nuclear DNA, and Mitochondrial DNA Markers, Evolution, 2000, vol. 54, pp. 640–651.

    CAS  PubMed  Google Scholar 

  17. Seeb, L.W., Habicht, C., Templin, W.D., et al., Genetic Diversity of Sockeye Salmon of Cook Inlet, Alaska, and Its Application to Management of Populations Affected by the Exxon Valdez Oil Spill, Trans. Am. Fish. Soc., 2000, vol. 129, pp. 1223–1249.

    Google Scholar 

  18. Vernon, E.H., Morphometric Comparison of Three Races of Kokanee (Oncorhynchus nerka) within a Large British Columbia Lake, J. Fish. Res., 1957, vol. 14, pp. 573–598.

    Google Scholar 

  19. Hartman, W.L. and Raleigh, R.F., Tributary Homing of Sockeye Salmon at Brooks and Karluk Lakes, Alaska, J. Fish. Res., 1964, vol. 21, pp. 485–504.

    Google Scholar 

  20. Varnavskii, V.S. and Varnavskaya, N.V., Estimation of Migration among Intrapopulation Groups of an Early-Spawning Race of Sockeye Salmon Oncorhynchus nerka (Walbaum) (Salmonidae) of Nachikinskoe Lake (Kamchatka), Vopr. Ikhtiol., 1985, no. 1, pp. 157–159.

  21. Birky, C.W., Maruyama, T., and Fuerst, P., An Approach to Population and Evolutionary Genetic Theory for Genes in Mitochondria and Chloroplasts, and Some Results, Genetics, 1983, vol. 103, pp. 513–527.

    PubMed  Google Scholar 

  22. Wright, S., The Genetic Structure of Populations, Ann. Eugen., 1951, vol. 15, pp. 323–354.

    Google Scholar 

  23. Wright, S., The Interpretation of Population Structure by F-Statistics with Special Regard to System of Mating, Evolution, 1965, vol. 19, pp. 395–420.

    Google Scholar 

  24. Robertson, A., The Effect of Non-Random Mating within Inbred Lines on the Rate of Inbreeding, Genet. Res., 1964, vol. 5, pp. 164–167.

    Google Scholar 

  25. Kimura, M. and Ohta, T., Theoretical Aspects of Population Genetics, Princeton: Princeton Univ. Press, 1971.

    Google Scholar 

  26. Ostroumov, A.G., Spawning Stock of Salmon and Dynamics of Its Size in the Basin of Azabach’e Lake According to Aerosurveying and Aerophotography, Izv. Tikhook. Inst. Rybn. Khoz. Okeanogr., 1972, vol. 82, pp. 135–142.

    Google Scholar 

  27. Foerster, R.E., The Sockeye Salmon, Oncorhynchus nerka, Bull. Fish. Res, 1968, vol. 162.

  28. Quinn, T.P., Wood, C.C., Margolis, L., et al., Homing in Wild Sockeye Salmon (Oncorhynchus nerka) Populations As Inferred from Differences in Parasite Prevalence and Allozyme Allele Frequencies, Can. J. Fish. Aquat. Sci., 1987, vol. 44, pp. 1963–1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

__________

Translated from Genetika, Vol. 41, No. 5, 2005, pp. 680–685.

Original Russian Text Copyright © 2005 by Efremov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Efremov, V.V. Effective Size of the Early-Run Sockeye Salmon Oncorhynchus nerka Population of Lake Azabach’e, Kamchatka Peninsula Evaluation of the Effect of Interaction between Subpopulations within a Subdivided Population. Russ J Genet 41, 548–552 (2005). https://doi.org/10.1007/s11177-005-0125-6

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11177-005-0125-6

Keywords

Navigation