Skip to main content
Log in

Design principles and action of molecular logic gates

  • Reviews
  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

The principles of design, physical and chemical characteristics underlying the operation of molecular logic gates (MLGs), which can replace the modern semiconductor elements in the information processing systems, are considered. MLGs are able to find other applications in nanotechnology, as sensors, in medical diagnosis, due to their small size, multifunctionality, and variety of input and output signals. The requirements to the structure and properties of the molecular system for its application as MLG are analyzed. The MLG design algorithm starting from the structure of compound (direct problem) is shown by individual examples. The advantages and disadvantages of MLGs, the existing problems and ways to solve them are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. de Silva, H. Q. N. Gunaratne, C. P. McCoy, Nature, 1993, 364, 42.

    Article  Google Scholar 

  2. http://www.apps.webofknowledge.com.

  3. A. P. de Silva, N. D. McClenaghan, Chem. Eur. J., 2004, 10, 574.

    Article  Google Scholar 

  4. D. Gust, T. A. Moore, A. L. Moore, Chem. Commun., 2006, 1169.

    Google Scholar 

  5. F. M. Raymo, M. Tomasulo, Chem. Eur. J., 2006, 12, 3186.

    Article  CAS  Google Scholar 

  6. A. Credi, Angew. Chem., Int. Ed., 2007, 46, 5472.

    Article  CAS  Google Scholar 

  7. A. P. de Silva, S. Uchiyama, Nature Nanotechnology, 2007, 2, 399.

    Article  Google Scholar 

  8. G. Y. Jiang, Y. L. Song, X. F. Guo, D. Q. Zhang, D. B. Zhu, Adv. Mater., 2008, 20, 2888.

    Article  CAS  Google Scholar 

  9. V. Balzani, A. Credi, M. Venturi, Chem. Eur. J., 2008, 14, 26.

    Article  CAS  Google Scholar 

  10. K. Szacilowski, Chem. Rev., 2008, 108, 3481.

    Article  CAS  Google Scholar 

  11. U. Pischel, Aust. J. Chem., 2010, 63, 148.

    Article  CAS  Google Scholar 

  12. J. Andreasson, U. Pischel, Chem. Soc. Rev., 2010, 39, 174.

    Article  CAS  Google Scholar 

  13. M. F. Budyka, Khim. Vysokikh Energii, 2010, 44, 154 [High Energy Chem. (Engl. Transl.), 2010, 44].

    Google Scholar 

  14. P. Ceroni, A. Credi, M. Venturi, V. Balzani, Photochem. Photobiol. Sci., 2010, 9, 1561.

    Article  CAS  Google Scholar 

  15. A P. de Silva, Chem. Asian J., 2011, 6, 750.

    Article  Google Scholar 

  16. A. P. de Silva, Isr. J. Chem., 2011, 51, 16.

    Article  Google Scholar 

  17. M. Baroncini, M. Semeraro, A. Credi, Isr. J. Chem., 2011, 51, 23.

    Article  CAS  Google Scholar 

  18. D. Gust, J. Andreasson, U. Pischel, T. A. Moore, A. L. Moore, Chem. Commun., 2012, 48, 1947.

    Article  CAS  Google Scholar 

  19. U. Pischel, J. Andreasson, D. Gust, V. F. Pais, Chem. Phys. Chem., 2013, 14, 28.

    CAS  Google Scholar 

  20. J. Andreasson, U. Pischel, Isr. J. Chem., 2013, 53, 236.

    Article  CAS  Google Scholar 

  21. V. I. Minkin, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 687 [Izv. Akad. Nauk, Ser. Khim., 2008, 673].

    Article  CAS  Google Scholar 

  22. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, Ros. Nanotekhnologii [Nanotechnologies in Russia], 2007, 2, 89 (in Russian).

    Google Scholar 

  23. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 2586 [Izv. Akad. Nauk, Ser. Khim., 2008, 2535].

    Article  CAS  Google Scholar 

  24. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, Khim. Vysokikh Energii, 2008, 42, 497 [High Energy Chem. (Engl. Transl.), 2008, 42].

    Google Scholar 

  25. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, J. Mat. Chem., 2009, 19, 7721.

    Article  CAS  Google Scholar 

  26. X. Guo, D. Zhang, G. Zhang, D. Zhu, J. Phys. Chem. Ser. B, 2004, 108, 11942.

    Article  CAS  Google Scholar 

  27. W. Sun, C. H. Xu, Z. Zhu, C. J. Fang, C. H. Yan, J. Phys. Chem. Ser. C, 2008, 112, 16973.

    Article  CAS  Google Scholar 

  28. Q. Q. Wu, X. Y. Duan, Q. H. Song, J. Phys. Chem. Ser. C, 2011, 115, 23970.

    Article  CAS  Google Scholar 

  29. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, Khim. Vysokikh Energii, 2011, 45, 313 [High Energy Chem. (Engl. Transl.), 2011, 45].

    Google Scholar 

  30. D. Margulies, G. Melman, A. Shanzer, J. Am. Chem. Soc., 2006, 128, 4865.

    Article  CAS  Google Scholar 

  31. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, Ros. Nanotekhnologii [Nanotechnologies in Russia], 2012, 7, 89 (in Russian).

    Google Scholar 

  32. M. F. Budyka, N. I. Potashova, T. N. Gavrishova, V. M. Lee, Khim. Vysokikh Energii, 2012, 46, 369 [High Energy Chem. (Engl. Transl.), 2012, 46].

    Google Scholar 

  33. M. F. Budyka, V. M. Lee, T. N. Gavrishova, J. Photochem. Photobiol. A: Chem., 2014, 279, 59.

    Article  CAS  Google Scholar 

  34. M. F. Budyka, V. M. Lee, Mendeleev Commun., 2014, 24, 140.

    Article  Google Scholar 

  35. D. H. Qu, Q. C. Wang, H. Tian, Angew. Chem., Int. Ed., 2005, 44, 5296.

    Article  CAS  Google Scholar 

  36. J. Andreasson, S. D. Straight, G. Kodis, C. D. Park, M. Hambourger, M. Gervaldo, B. Albinsson, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem. Soc., 2006, 128, 16259.

    Article  CAS  Google Scholar 

  37. J. Andreasson, G. Kodis, Y. Terazono, P. A. Liddell, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem. Soc., 2004, 126, 15926.

    Article  CAS  Google Scholar 

  38. S. D. Straight, J. Andreasson, G. Kodis, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem. Soc., 2005, 127, 9403.

    Article  CAS  Google Scholar 

  39. J. Andreasson, S. D. Straight, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, Angew. Chem., Int. Ed., 2007, 46, 958.

    Article  CAS  Google Scholar 

  40. J. Andreasson, S. D. Straight, S. Bandyopadhyay, R. H. Mitchell, T. A. Moore, A. L. Moore, D. Gust, J. Phys. Chem. Ser. C., 2007, 111, 14274.

    Article  CAS  Google Scholar 

  41. S. D. Straight, P. A. Liddell, Y. Terazono, T. A. Moore, A. L. Moore, D. Gust, Adv. Funct. Mater., 2007, 17, 777.

    Article  CAS  Google Scholar 

  42. J. Andreasson, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust, Chem. Eur. J., 2009, 15, 3936.

    Article  CAS  Google Scholar 

  43. J. Andreasson, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem. Soc., 2008, 130, 11122.

    Article  CAS  Google Scholar 

  44. J. Andreasson, U. Pischel, S. D. Straight, T. A. Moore, A. L. Moore, D. Gust, J. Am. Chem. Soc., 2011, 133, 11641.

    Article  CAS  Google Scholar 

  45. J. M. Tour, M. Kozaki, J. M. Seminario, J. Am. Chem. Soc., 1998, 120, 8486.

    Article  CAS  Google Scholar 

  46. S. Ozlem, E. U. Akkaya, J. Am. Chem. Soc., 2009, 131, 48.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Budyka.

Additional information

Based on the materials of the XXV Conference “Modern Chemical Physics” (September 20–October 1, 2013, Tuapse).

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 8, pp. 1656–1665, August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Budyka, M.F. Design principles and action of molecular logic gates. Russ Chem Bull 63, 1656–1665 (2014). https://doi.org/10.1007/s11172-014-0651-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11172-014-0651-2

Key words

Navigation