Skip to main content
Log in

Durable multifunctional superhydrophobic sponge for oil/water separation and adsorption of volatile organic compounds

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Inspired by the strong adhesion of mussels, a super-hydrophobic sponge was designed and prepared by a simple and inexpensive one-pot solution immersion method. The prepared superhydrophobic sponge can not only efficiently separate the oil–water mixture, more importantly, but also remove volatile organic compounds in the atmospheric environment. Polydopamine (PDA) enables polydivinylbenzene (PDVB) particles to be firmly and tightly attached to the melamine sponge skeleton, thereby making the hydrophilic sponge superhydrophobic and providing adsorption sites for volatile organic compounds in the air. The synergy enables the sponge/PDA/PDVB to quickly adsorb oils and organic substances, and it has high stability and capacity even after 20 cycles. In addition, superhydrophobic sponges can still perform outstanding adsorption performance even under highly acidic and alkaline environments. Meanwhile, the static adsorption capacity of the sponge/PDA/PDVB for gaseous toluene is 5.7 times that of activated carbon. Compared with pure PDVB, the super-hydrophobic sponge in the dynamic experiment has a penetration time increased from 6 to 390 min, which is 65 times longer than that of the PDVB, and the adsorption performance has been greatly improved. Therefore, our strategy may achieve a new effect, which can quickly and easily separate oil–water mixtures and remove volatile gaseous pollutants, and it can provide potential options for practical applications

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Zhu, S. Qiu, W. Jiang, D. Wu, C. Zhang, Environ. Sci. Technol. 45, 4527 (2011)

    CAS  PubMed  Google Scholar 

  2. H. Adib, A. Raisi, B. Salari, Res. Chem. Intermed. 45, 5725 (2019)

    CAS  Google Scholar 

  3. M.A. Shannon, P.W. Bohn, M. Elimelech, J.G. Georgiadis, B.J. Marinas, A.M. Mayes, Nature 452, 301 (2008)

    CAS  PubMed  Google Scholar 

  4. I.B. Ivshina, M.S. Kuyukina, A.V. Krivoruchko, A.A. Elkin, S.O. Makarov, C.J. Cunningham, T.A. Peshkur, R.M. Atlas, J.C. Philp, Environ. Sci. Process Impacts 17, 1201 (2015)

    CAS  PubMed  Google Scholar 

  5. H. Adib, A. Raisi, Res. Chem. Intermed. 46, 3227 (2020)

    CAS  Google Scholar 

  6. S. Shi, M.S. Sadullah, M.A. Gondal, Y. Sui, S. Liu, Z.H. Yamani, K. Shen, Q. Xu, J. Mao, Res. Chem. Intermed. 41, 8019 (2015)

    CAS  Google Scholar 

  7. X. Zhang, Z. Li, K. Liu, L. Jiang, Adv. Funct. Mater 23, 2881 (2013)

    CAS  Google Scholar 

  8. R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, J. Mater. Chem. A 5, 16025 (2017)

    CAS  Google Scholar 

  9. A. Bayat, S.F. Aghamiri, A. Moheb, G.R. Vakili-Nezhaad, Chem. Eng. Technol. 28, 1525 (2005)

    CAS  Google Scholar 

  10. Z. Wang, G. Liu, S. Huang, Angew. Chem. Int. Edn. 55, 14610 (2016)

    CAS  Google Scholar 

  11. Y.S. Lee, B.K. Kaang, N. Han, H.-J. Leeb, W.S. Choi, J. Mater. Chem. A 6, 16371 (2018)

    CAS  Google Scholar 

  12. S. Basak, J. Nanda, A. Banerjee, J. Mater. Chem. 22, 11658 (2012)

    CAS  Google Scholar 

  13. Q. Zhu, Q. Pan, F. Liu, J. Phys. Chem. C 115, 17464 (2011)

    CAS  Google Scholar 

  14. D.D. Nguyen, N.-H. Tai, S.-B. Leea, W.-S. Kuob, Energy Environ. Sci. 5, 7908 (2012)

    CAS  Google Scholar 

  15. L. Wu, L. Li, B. Li, J. Zhang, A. Wang, A.C.S. Appl, Mater. Interfaces 7, 4936 (2015)

    CAS  Google Scholar 

  16. X. Chen, J.A. Weibel, S.V. Garimella, Ind. Eng. Chem. Res. 55, 3596 (2016)

    CAS  Google Scholar 

  17. C. Ruan, K. Ai, X. Li, L. Lu, Angew. Chem. 126, 5556 (2014)

    Google Scholar 

  18. G. Jiang, R. Hu, X. Xi, X. Wang, R. Wang, J. Mater. Res. 28, 651 (2012)

    Google Scholar 

  19. H. Wang, E. Wang, Z. Liu, D. Gao, R. Yuan, L. Sun, Y. Zhu, J. Mater. Chem. A. 3, 266 (2015)

    CAS  Google Scholar 

  20. Y. Lu, W. Yuan, A.C.S. Appl, Mater. Interfaces 9, 29167 (2017)

    CAS  Google Scholar 

  21. Z. Cheng, C. Li, H. Lai, H.L.Y. Du, M. Liu, K. Sun, N.Z.L. Jin, N. Zhang, L. Jiang, Adv. Mater. Interfaces 3, 1600370 (2016)

    Google Scholar 

  22. N. Lv, X. Wang, S. Peng, L. Luo, R. Zhou, RSC Adv. 8, 30257 (2018)

    CAS  Google Scholar 

  23. B. Liu, L. Zhang, H. Wang, Z. Bian, Ind. Eng. Chem. Res. 56, 5795 (2017)

    CAS  Google Scholar 

  24. J. Gu, H. Fan, C. Li, J. Caro, H. Meng, Angew. Chem. 58, 5297 (2019)

    CAS  Google Scholar 

  25. N. Cao, B. Yang, A. Barras, S. Szunerits, R. Boukherroub, Chem. Eng. J. 307, 319 (2016)

    Google Scholar 

  26. Y. Zhang, S. Wei, F. Liu, Y. Du, S. Liu, Y. Ji, T. Yokoi, T. Tatsumi, F. Xiao, Nano Today 4, 135 (2009)

    Article  CAS  Google Scholar 

  27. J. Yang, M.A.C. Stuart, M. Kamperman, Jack of all trades: versatile catechol crosslinking mechanisms. Chem. Soc. Rev. 43, 8271 (2014)

    CAS  PubMed  Google Scholar 

  28. J.H. Ryu, P.B. Messersmith, H. Lee, A.C.S. Appl, Mater. Interfaces 10, 7523 (2018)

    CAS  Google Scholar 

  29. B.H. Kim, D.H. Lee, J.Y. Kim, D.O. Shin, H.Y. Jeong, S. Hong, J.M. Yun, C.M. Koo, H. Lee, S.O. Kim, Adv. Mater. 23, 5618 (2011)

    CAS  PubMed  Google Scholar 

  30. F. Guo, Q. Wen, Y. Peng, Z. Guo, J. Mater. Chem. A 5, 21866 (2017)

    CAS  Google Scholar 

  31. W.B. Neinhuis, Planta 202, 1 (1997)

    Google Scholar 

  32. R.D. Hazlett, J. Colloid Interface Sci. 137, 527 (1990)

    CAS  Google Scholar 

  33. N.A. Patankar, Transition between superhydrophobic states on rough surfaces. Langmuir 20, 7097 (2004)

    CAS  PubMed  Google Scholar 

  34. J. Bico, C. Marzolin, D. Quéré, Europhys. Lett. 47, 743 (1999)

    CAS  Google Scholar 

  35. B. He, N.A. Patankar, J. Lee, Langmuir 19, 4999 (2003)

    CAS  Google Scholar 

  36. S.R. Churipard, K.S. Kanakikodi, D.A. Rambhia, C.S.K. Raju, A.B. Halgeri, N.V. Choudary, G.S. Ganesh, R. Ravishankar, S.P. Maradur, Chem. Eng. J. 380, 122481 (2020)

    CAS  Google Scholar 

  37. S. Qiu, B. Jiang, X. Zheng, J. Zheng, C. Zhu, M. Wu, Carbon 84, 551 (2015)

    CAS  Google Scholar 

  38. J. Zhao, M. Wang, K.K. Gleason, Adv. Mater. Interfaces 4, 1700270 (2017)

    Google Scholar 

  39. C.D. Petruczok, R. Yang, K.K. Gleason, Macromolecules 46, 1832 (2013)

    CAS  Google Scholar 

  40. Q. Pan, J. Liu, Q. Zhu, A.C.S. Appl, Mater. Interfaces 2, 2026 (2010)

    CAS  Google Scholar 

  41. A.B.D. Cassie, S. Baxter, Faraday Soc 40, 546 (1944)

    CAS  Google Scholar 

  42. Y. Liu, K. Ai, L. Lu, Chem. Rev. 114, 5057 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Scientific Research Project of Guangzhou City (201804020026) and National Natural Science Foundation of China (21777047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5197 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, J., Zhang, J., Zhang, X. et al. Durable multifunctional superhydrophobic sponge for oil/water separation and adsorption of volatile organic compounds. Res Chem Intermed 46, 4297–4309 (2020). https://doi.org/10.1007/s11164-020-04207-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-020-04207-7

Keywords

Navigation