Skip to main content

Advertisement

Log in

Regulation of pyruvate metabolism in metabolic-related diseases

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Pyruvate is an obligatory intermediate in the oxidative disposal of glucose and a major precursor for the synthesis of glucose, glycerol, fatty acids, and non-essential amino acids. Stringent control of the fate of pyruvate is critically important for cellular homeostasis. The regulatory mechanisms for its metabolism are therefore of great interest. Recent advances include the findings that (a) the mitochondrial pyruvate carrier is sensitive to inhibition by thiazolidinediones; (b) pyruvate dehydrogenase kinases induce the Warburg effect in many disease states; and (c) pyruvate carboxylase is an important determinate of the rates of gluconeogenesis in humans with type 2 diabetes. These enzymes are potential therapeutic targets for several diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Halestrap AP, Denton RM. Specific inhibition of pyruvate transport in rat liver mitochondria and human erythrocytes by alpha-cyano-4-hydroxycinnamate. Biochem J. 1974;138(2):313–6.

    CAS  PubMed  Google Scholar 

  2. Halestrap AP, Wilson MC. The monocarboxylate transporter family–role and regulation. IUBMB Life. 2012;64(2):109–19.

    CAS  PubMed  Google Scholar 

  3. Thomas AP, Halestrap AP. Identification of the protein responsible for pyruvate transport into rat liver and heart mitochondria by specific labelling with [3H]N-phenylmaleimide. Biochem J. 1981;196(2):471–9.

    CAS  PubMed  Google Scholar 

  4. Bricker DK, Taylor EB, Schell JC, Orsak T, Boutron A, Chen YC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;337(6090):96–100.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Herzig S, Raemy E, Montessuit S, Veuthey JL, Zamboni N, Westermann B, et al. Identification and functional expression of the mitochondrial pyruvate carrier. Science. 2012;337(6090):93–6.

    CAS  PubMed  Google Scholar 

  6. Henry RR, Erickson D, Ciaraldi TP. PPARg agonists and the future for insulin sensitizers: a report of a debate and presentations on the subject at the 72nd Scientific Sessions of the American Diabetes Association, Philadelpia, 8–12 June, 2012. Br J Diabetes Vasc Dis. 2012;12(4):206–10.

    Google Scholar 

  7. Birnbaum Y, Long B, Qian J, Perez-Polo JR, Ye Y. Pioglitazone limits myocardial infarct size, activates Akt, and upregulates cPLA2 and COX-2 in a PPAR-gamma-independent manner. Basic Res Cardiol. 2011;106(3):431–46.

    CAS  PubMed  Google Scholar 

  8. Chen Z, Vigueira PA, Chambers KT, Hall AM, Mitra MS, Qi N, et al. Insulin resistance and metabolic derangements in obese mice are ameliorated by a novel peroxisome proliferator-activated receptor gamma-sparing thiazolidinedione. J Biol Chem. 2012;287(28):23537–48.

    CAS  PubMed  Google Scholar 

  9. Feinstein DL, Spagnolo A, Akar C, Weinberg G, Murphy P, Gavrilyuk V, et al. Receptor-independent actions of PPAR thiazolidinedione agonists: is mitochondrial function the key? Biochem Pharmacol. 2005;70(2):177–88.

    CAS  PubMed  Google Scholar 

  10. LeBrasseur NK, Kelly M, Tsao TS, Farmer SR, Saha AK, Ruderman NB, et al. Thiazolidinediones can rapidly activate AMP-activated protein kinase in mammalian tissues. Am J Physiol Endocrinol Metab. 2006;291(1):E175–81.

    CAS  PubMed  Google Scholar 

  11. Norris AW, Chen L, Fisher SJ, Szanto I, Ristow M, Jozsi AC, et al. Muscle-specific PPARgamma-deficient mice develop increased adiposity and insulin resistance but respond to thiazolidinediones. J Clin Invest. 2003;112(4):608–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Thal SC, Heinemann M, Luh C, Pieter D, Werner C, Engelhard K. Pioglitazone reduces secondary brain damage after experimental brain trauma by PPAR-gamma-independent mechanisms. J Neurotrauma. 2011;28(6):983–93.

    PubMed  Google Scholar 

  13. Wei S, Kulp SK, Chen CS. Energy restriction as an antitumor target of thiazolidinediones. J Biol Chem. 2010;285(13):9780–91.

    CAS  PubMed  Google Scholar 

  14. Colca JR, VanderLugt JT, Adams WJ, Shashlo A, McDonald WG, Liang J, et al. Clinical proof-of-concept study with MSDC-0160, a prototype mTOT-modulating insulin sensitizer. Clin Pharmacol Ther. 2013;93(4):352–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  15. Colca JR, McDonald WG, Cavey GS, Cole SL, Holewa DD, Brightwell-Conrad AS, et al. Identification of a mitochondrial target of thiazolidinedione insulin sensitizers (mTOT)–relationship to newly identified mitochondrial pyruvate carrier proteins. PLoS One. 2013;8(5):e61551.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Divakaruni AS, Wiley SE, Rogers GW, Andreyev AY, Petrosyan S, Loviscach M, et al. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier. Proc Natl Acad Sci U S A. 2013;110(14):5422–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Kaplan RS, Mayor JA, Blackwell R, Maughon RH, Wilson GL. The effect of insulin supplementation on diabetes-induced alterations in the extractable levels of functional mitochondrial anion transport proteins. Arch Biochem Biophys. 1991;287(2):305–11.

    CAS  PubMed  Google Scholar 

  18. Harris RA, Bowker-Kinley MM, Huang B, Wu P. Regulation of the activity of the pyruvate dehydrogenase complex. Adv Enzym Regul. 2002;42:249–59.

    CAS  Google Scholar 

  19. Holness MJ, Sugden MC. Regulation of pyruvate dehydrogenase complex activity by reversible phosphorylation. Biochem Soc Trans. 2003;31(Pt 6):1143–51.

    CAS  PubMed  Google Scholar 

  20. Randle PJ. Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev. 1998;14(4):263–83.

    CAS  PubMed  Google Scholar 

  21. Bowker-Kinley MM, Davis WI, Wu P, Harris RA, Popov KM. Evidence for existence of tissue-specific regulation of the mammalian pyruvate dehydrogenase complex. Biochem J. 1998;329(Pt 1):191–6.

    CAS  PubMed  Google Scholar 

  22. Bao H, Kasten SA, Yan X, Roche TE. Pyruvate dehydrogenase kinase isoform 2 activity limited and further inhibited by slowing down the rate of dissociation of ADP. Biochemistry. 2004;43(42):13432–41.

    CAS  PubMed  Google Scholar 

  23. Wu P, Blair PV, Sato J, Jaskiewicz J, Popov KM, Harris RA. Starvation increases the amount of pyruvate dehydrogenase kinase in several mammalian tissues. Arch Biochem Biophys. 2000;381(1):1–7.

    CAS  PubMed  Google Scholar 

  24. Attia RR, Sharma P, Janssen RC, Friedman JE, Deng X, Lee JS, et al. Regulation of pyruvate dehydrogenase kinase 4 (PDK4) by CCAAT/enhancer-binding protein beta (C/EBPbeta). J Biol Chem. 2011;286(27):23799–807.

    CAS  PubMed  Google Scholar 

  25. Huang B, Wu P, Bowker-Kinley MM, Harris RA. Regulation of pyruvate dehydrogenase kinase expression by peroxisome proliferator-activated receptor-alpha ligands, glucocorticoids, and insulin. Diabetes. 2002;51(2):276–83.

    CAS  PubMed  Google Scholar 

  26. Kwon HS, Huang B, Unterman TG, Harris RA. Protein kinase B-alpha inhibits human pyruvate dehydrogenase kinase-4 gene induction by dexamethasone through inactivation of FOXO transcription factors. Diabetes. 2004;53(4):899–910.

    CAS  PubMed  Google Scholar 

  27. Chokkalingam K, Jewell K, Norton L, Littlewood J, van Loon LJ, Mansell P, et al. High-fat/low-carbohydrate diet reduces insulin-stimulated carbohydrate oxidation but stimulates nonoxidative glucose disposal in humans: an important role for skeletal muscle pyruvate dehydrogenase kinase 4. J Clin Endocrinol Metab. 2007;92(1):284–92.

    CAS  PubMed  Google Scholar 

  28. Holness MJ, Kraus A, Harris RA, Sugden MC. Targeted upregulation of pyruvate dehydrogenase kinase (PDK)-4 in slow-twitch skeletal muscle underlies the stable modification of the regulatory characteristics of PDK induced by high-fat feeding. Diabetes. 2000;49(5):775–81.

    CAS  PubMed  Google Scholar 

  29. Kim YI, Lee FN, Choi WS, Lee S, Youn JH. Insulin regulation of skeletal muscle PDK4 mRNA expression is impaired in acute insulin-resistant states. Diabetes. 2006;55(8):2311–7.

    CAS  PubMed  Google Scholar 

  30. Pehleman TL, Peters SJ, Heigenhauser GJ, Spriet LL. Enzymatic regulation of glucose disposal in human skeletal muscle after a high-fat, low-carbohydrate diet. J Appl Physiol (1985). 2005;98(1):100–7.

    CAS  Google Scholar 

  31. Peters SJ, Harris RA, Wu P, Pehleman TL, Heigenhauser GJ, Spriet LL. Human skeletal muscle PDH kinase activity and isoform expression during a 3-day high-fat/low-carbohydrate diet. Am J Physiol Endocrinol Metab. 2001;281(6):E1151–8.

    CAS  PubMed  Google Scholar 

  32. Tao R, Xiong X, Harris RA, White MF, Dong XC. Genetic inactivation of pyruvate dehydrogenase kinases improves hepatic insulin resistance induced diabetes. PLoS One. 2013;8(8):e71997.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Hwang B, Jeoung NH, Harris RA. Pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) deficiency attenuates the long-term negative effects of a high-saturated fat diet. Biochem J. 2009;423(2):243–52.

    CAS  PubMed  Google Scholar 

  34. Jeoung NH, Harris RA. Pyruvate dehydrogenase kinase-4 deficiency lowers blood glucose and improves glucose tolerance in diet-induced obese mice. Am J Physiol Endocrinol Metab. 2008;295(1):E46–54.

    CAS  PubMed  Google Scholar 

  35. Jeoung NH, Wu P, Joshi MA, Jaskiewicz J, Bock CB, Depaoli-Roach AA, et al. Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation. Biochem J. 2006;397(3):417–25.

    CAS  PubMed  Google Scholar 

  36. Huang J, Jones D, Luo B, Sanderson M, Soto J, Abel ED, et al. Iron overload and diabetes risk: a shift from glucose to Fatty Acid oxidation and increased hepatic glucose production in a mouse model of hereditary hemochromatosis. Diabetes. 2011;60(1):80–7.

    CAS  PubMed  Google Scholar 

  37. Kim YD, Kim YH, Tadi S, Yu JH, Yim YH, Jeoung NH, et al. Metformin inhibits growth hormone-mediated hepatic PDK4 gene expression through induction of orphan nuclear receptor small heterodimer partner. Diabetes. 2012;61(10):2484–94.

    CAS  PubMed  Google Scholar 

  38. Connaughton S, Chowdhury F, Attia RR, Song S, Zhang Y, Elam MB, et al. Regulation of pyruvate dehydrogenase kinase isoform 4 (PDK4) gene expression by glucocorticoids and insulin. Mol Cell Endocrinol. 2010;315(1–2):159–67.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Puthanveetil P, Wang Y, Wang F, Kim MS, Abrahani A, Rodrigues B. The increase in cardiac pyruvate dehydrogenase kinase-4 after short-term dexamethasone is controlled by an Akt-p38-forkhead box other factor-1 signaling axis. Endocrinology. 2010;151(5):2306–18.

    CAS  PubMed  Google Scholar 

  40. Jeoung NH, Rahimi Y, Wu P, Lee WN, Harris RA. Fasting induces ketoacidosis and hypothermia in PDHK2/PDHK4-double-knockout mice. Biochem J. 2012;443(3):829–39.

    CAS  PubMed  Google Scholar 

  41. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309–14.

    CAS  PubMed  Google Scholar 

  42. Freed-Pastor WA, Prives C. Mutant p53: one name, many proteins. Genes Dev. 26(12):1268–86.

  43. Contractor T, Harris CR. p53 negatively regulates transcription of the pyruvate dehydrogenase kinase Pdk2. Cancer Res. 2012;72(2):560–7.

    CAS  PubMed  Google Scholar 

  44. Bensaad K, Vousden KH. Savior and slayer: the two faces of p53. Nat Med. 2005;11(12):1278–9.

    CAS  PubMed  Google Scholar 

  45. Hsieh MC, Das D, Sambandam N, Zhang MQ, Nahle Z. Regulation of the PDK4 isozyme by the Rb-E2F1 complex. J Biol Chem. 2008;283(41):27410–7.

    CAS  PubMed  Google Scholar 

  46. Sameen S, Khalid Z, Malik SI. Role of pyruvate dehydrogenase kinases (PDK’s) and their respective microRNA’s in human ovarian cancer. J Med Gen Genomics. 2011;3(7):115–21.

    CAS  Google Scholar 

  47. Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R, et al. A mitochondria-K + channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell. 2007;11(1):37–51.

    CAS  PubMed  Google Scholar 

  48. Sutendra G, Michelakis ED. Pyruvate dehydrogenase kinase as a novel therapeutic target in oncology. Front Oncol. 2013;3:38.

    PubMed Central  PubMed  Google Scholar 

  49. Kim JW, Gao P, Liu YC, Semenza GL, Dang CV. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 2007;27(21):7381–93.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006;3(3):177–85.

    PubMed  Google Scholar 

  51. Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 2006;3(3):187–97.

    CAS  PubMed  Google Scholar 

  52. Kluza J, Corazao-Rozas P, Touil Y, Jendoubi M, Maire C, Guerreschi P, et al. Inactivation of the HIF-1alpha/PDK3 signaling axis drives melanoma toward mitochondrial oxidative metabolism and potentiates the therapeutic activity of pro-oxidants. Cancer Res. 2012;72(19):5035–47.

    CAS  PubMed  Google Scholar 

  53. Lu CW, Lin SC, Chen KF, Lai YY, Tsai SJ. Induction of pyruvate dehydrogenase kinase-3 by hypoxia-inducible factor-1 promotes metabolic switch and drug resistance. J Biol Chem. 2008;283(42):28106–14.

    CAS  PubMed  Google Scholar 

  54. Jones RG, Thompson CB. Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev. 2009;23(5):537–48.

    CAS  PubMed  Google Scholar 

  55. Faubert B, Boily G, Izreig S, Griss T, Samborska B, Dong Z, et al. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo. Cell Metab. 2013;17(1):113–24.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Wu CA, Chao Y, Shiah SG, Lin WW. Nutrient deprivation induces the Warburg effect through ROS/AMPK-dependent activation of pyruvate dehydrogenase kinase. Biochim Biophys Acta. 2013;1833(5):1147–56.

    CAS  PubMed  Google Scholar 

  57. Grassian AR, Metallo CM, Coloff JL, Stephanopoulos G, Brugge JS. Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation. Genes Dev. 2011;25(16):1716–33.

    CAS  PubMed  Google Scholar 

  58. Kamarajugadda S, Stemboroski L, Cai Q, Simpson NE, Nayak S, Tan M, et al. Glucose oxidation modulates anoikis and tumor metastasis. Mol Cell Biol. 2012;32(10):1893–907.

    CAS  PubMed Central  PubMed  Google Scholar 

  59. Lee JH, Kim EJ, Kim DK, Lee JM, Park SB, Lee IK, et al. Hypoxia induces PDK4 gene expression through induction of the orphan nuclear receptor ERRgamma. PLoS One. 2012;7(9):e46324.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer. 2011;11(2):85–95.

    CAS  PubMed  Google Scholar 

  61. Cheung TH, Rando TA. Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol. 2013;14(6):329–40.

    CAS  PubMed  Google Scholar 

  62. Simsek T, Kocabas F, Zheng J, Deberardinis RJ, Mahmoud AI, Olson EN, et al. The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell. 2010;7(3):380–90.

    CAS  PubMed  Google Scholar 

  63. Takubo K, Goda N, Yamada W, Iriuchishima H, Ikeda E, Kubota Y, et al. Regulation of the HIF-1alpha level is essential for hematopoietic stem cells. Cell Stem Cell. 2010;7(3):391–402.

    CAS  PubMed  Google Scholar 

  64. Suda T, Takubo K, Semenza GL. Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 2011;9(4):298–310.

    CAS  PubMed  Google Scholar 

  65. Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, et al. Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 2013;12(1):49–61.

    CAS  PubMed  Google Scholar 

  66. Kong SW, Bodyak N, Yue P, Liu Z, Brown J, Izumo S, et al. Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiol Genomics. 2005;21(1):34–42.

    CAS  PubMed  Google Scholar 

  67. Arikawa E, Ma RC, Isshiki K, Luptak I, He Z, Yasuda Y, et al. Effects of insulin replacements, inhibitors of angiotensin, and PKCbeta’s actions to normalize cardiac gene expression and fuel metabolism in diabetic rats. Diabetes. 2007;56(5):1410–20.

    CAS  PubMed  Google Scholar 

  68. Herrema H, Derks TG, van Dijk TH, Bloks VW, Gerding A, Havinga R, et al. Disturbed hepatic carbohydrate management during high metabolic demand in medium-chain acyl-CoA dehydrogenase (MCAD)-deficient mice. Hepatology. 2008;47(6):1894–904. doi:10.1002/hep.22284.

    CAS  PubMed  Google Scholar 

  69. Chambers KT, Leone TC, Sambandam N, Kovacs A, Wagg CS, Lopaschuk GD, et al. Chronic inhibition of pyruvate dehydrogenase in heart triggers an adaptive metabolic response. J Biol Chem. 2011;286(13):11155–62.

    CAS  PubMed  Google Scholar 

  70. Zhao G, Jeoung NH, Burgess SC, Rosaaen-Stowe KA, Inagaki T, Latif S, et al. Overexpression of pyruvate dehydrogenase kinase 4 in heart perturbs metabolism and exacerbates calcineurin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 2008;294(2):H936–43.

    CAS  PubMed  Google Scholar 

  71. Fillmore N, Lopaschuk GD. Targeting mitochondrial oxidative metabolism as an approach to treat heart failure. Biochim Biophys Acta. 2013;1833(4):857–65.

    CAS  PubMed  Google Scholar 

  72. Ussher JR, Wang W, Gandhi M, Keung W, Samokhvalov V, Oka T, et al. Stimulation of glucose oxidation protects against acute myocardial infarction and reperfusion injury. Cardiovasc Res. 2012;94(2):359–69.

    CAS  PubMed  Google Scholar 

  73. Korotchkina LG, Sidhu S, Patel MS. R-lipoic acid inhibits mammalian pyruvate dehydrogenase kinase. Free Radic Res. 2004;38(10):1083–92.

    CAS  PubMed  Google Scholar 

  74. Onay-Besikci A, Wagg C, Lopaschuk TP, Keung W, Lopaschuk GD. Alpha-lipoic acid increases cardiac glucose oxidation independent of AMP-activated protein kinase in isolated working rat hearts. Basic Res Cardiol. 2007;102(5):436–44.

    CAS  PubMed  Google Scholar 

  75. Mori J, Basu R, McLean BA, Das SK, Zhang L, Patel VB, et al. Agonist-induced hypertrophy and diastolic dysfunction are associated with selective reduction in glucose oxidation: a metabolic contribution to heart failure with normal ejection fraction. Circ Heart Fail. 2012;5(4):493–503.

    CAS  PubMed  Google Scholar 

  76. Mori J, Alrob OA, Wagg CS, Harris RA, Lopaschuk GD, Oudit GY. ANG II causes insulin resistance and induces cardiac metabolic switch and inefficiency: a critical role of PDK4. Am J Physiol Heart Circ Physiol. 2013;304(8):H1103–13.

    CAS  PubMed  Google Scholar 

  77. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, et al. A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell. 2008;133(3):462–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, et al. Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 2013;123(3):1262–74.

    CAS  PubMed Central  PubMed  Google Scholar 

  79. Ozcan L, Wong CC, Li G, Xu T, Pajvani U, Park SK, et al. Calcium signaling through CaMKII regulates hepatic glucose production in fasting and obesity. Cell Metab. 2012;15(5):739–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Tao L, Xie Q, Ding YH, Li ST, Peng S, Zhang YP, et al. CAMKII and Calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16. Elife. 2013;2:e00518.

    PubMed Central  PubMed  Google Scholar 

  81. Meurs KM, Lahmers S, Keene BW, White SN, Oyama MA, Mauceli E, et al. A splice site mutation in a gene encoding for PDK4, a mitochondrial protein, is associated with the development of dilated cardiomyopathy in the Doberman pinscher. Hum Genet. 2012;131(8):1319–25.

    CAS  PubMed  Google Scholar 

  82. Ferreira AV, Segatto M, Menezes Z, Macedo AM, Gelape C, de Oliveira Andrade L, et al. Evidence for Trypanosoma cruzi in adipose tissue in human chronic Chagas disease. Microbes Infect. 2011;13(12–13):1002–5.

    PubMed Central  PubMed  Google Scholar 

  83. Garg N, Gerstner A, Bhatia V, DeFord J, Papaconstantinou J. Gene expression analysis in mitochondria from chagasic mice: alterations in specific metabolic pathways. Biochem J. 2004;381(Pt 3):743–52.

    CAS  PubMed  Google Scholar 

  84. Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe. 2013;13(1):108–17.

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Piao L, Sidhu VK, Fang YH, Ryan JJ, Parikh KS, Hong Z, et al. FOXO1-mediated upregulation of pyruvate dehydrogenase kinase-4 (PDK4) decreases glucose oxidation and impairs right ventricular function in pulmonary hypertension: therapeutic benefits of dichloroacetate. J Mol Med (Berl). 2013;91(3):333–46.

    CAS  Google Scholar 

  86. Mallinson JE, Constantin-Teodosiu D, Glaves PD, Martin EA, Davies WJ, Westwood FR, et al. Pharmacological activation of the pyruvate dehydrogenase complex reduces statin-mediated upregulation of FOXO gene targets and protects against statin myopathy in rodents. J Physiol. 2012;590(Pt 24):6389–402.

    CAS  PubMed  Google Scholar 

  87. Wang Y, Liu W, Masuyama R, Fukuyama R, Ito M, Zhang Q, et al. Pyruvate dehydrogenase kinase 4 induces bone loss at unloading by promoting osteoclastogenesis. Bone. 2012;50(1):409–19.

    CAS  PubMed  Google Scholar 

  88. Kennerson ML, Yiu EM, Chuang DT, Kidambi A, Tso SC, Ly C, et al. A new locus for X-linked dominant Charcot-Marie-Tooth disease (CMTX6) is caused by mutations in the pyruvate dehydrogenase kinase isoenzyme 3 (PDK3) gene. Hum Mol Genet. 2013;22(7):1404–16.

    CAS  PubMed  Google Scholar 

  89. Caruso M, Maitan MA, Bifulco G, Miele C, Vigliotta G, Oriente F, et al. Activation and mitochondrial translocation of protein kinase Cdelta are necessary for insulin stimulation of pyruvate dehydrogenase complex activity in muscle and liver cells. J Biol Chem. 2001;276(48):45088–97.

    CAS  PubMed  Google Scholar 

  90. Churchill EN, Murriel CL, Chen CH, Mochly-Rosen D, Szweda LI. Reperfusion-induced translocation of deltaPKC to cardiac mitochondria prevents pyruvate dehydrogenase reactivation. Circ Res. 2005;97(1):78–85.

    CAS  PubMed  Google Scholar 

  91. Acin-Perez R, Hoyos B, Zhao F, Vinogradov V, Fischman DA, Harris RA, et al. Control of oxidative phosphorylation by vitamin A illuminates a fundamental role in mitochondrial energy homoeostasis. FASEB J. 2010;24(2):627–36.

    CAS  PubMed  Google Scholar 

  92. Gong J, Hoyos B, Acin-Perez R, Vinogradov V, Shabrova E, Zhao F, et al. Two protein kinase C isoforms, delta and epsilon, regulate energy homeostasis in mitochondria by transmitting opposing signals to the pyruvate dehydrogenase complex. FASEB J. 2012;26(8):3537–49.

    CAS  PubMed  Google Scholar 

  93. Hoshi M, Takashima A, Noguchi K, Murayama M, Sato M, Kondo S, et al. Regulation of mitochondrial pyruvate dehydrogenase activity by tau protein kinase I/glycogen synthase kinase 3beta in brain. Proc Natl Acad Sci U S A. 1996;93(7):2719–23.

    CAS  PubMed Central  PubMed  Google Scholar 

  94. McBride HM, Neuspiel M, Wasiak S. Mitochondria: more than just a powerhouse. Curr Biol. 2006;16(14):R551–60.

    CAS  PubMed  Google Scholar 

  95. Hitosugi T, Fan J, Chung TW, Lythgoe K, Wang X, Xie J, et al. Tyrosine phosphorylation of mitochondrial pyruvate dehydrogenase kinase 1 is important for cancer metabolism. Mol Cell. 2011;44(6):864–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. Jitrapakdee S, St Maurice M, Rayment I, Cleland WW, Wallace JC, Attwood PV. Structure, mechanism and regulation of pyruvate carboxylase. Biochem J. 2008;413(3):369–87.

    CAS  PubMed Central  PubMed  Google Scholar 

  97. Jitrapakdee S, Wallace JC. Structure, function and regulation of pyruvate carboxylase. Biochem J. 1999;340(Pt 1):1–16.

    CAS  PubMed  Google Scholar 

  98. St Maurice M, Reinhardt L, Surinya KH, Attwood PV, Wallace JC, Cleland WW, et al. Domain architecture of pyruvate carboxylase, a biotin-dependent multifunctional enzyme. Science. 2007;317(5841):1076–9.

    CAS  PubMed  Google Scholar 

  99. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, Mates JM, et al. Pyruvate carboxylase is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci U S A. 2011;108(21):8674–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Fan TW, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, et al. Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer. 2009;8:41.

    PubMed Central  PubMed  Google Scholar 

  101. Forbes NS, Meadows AL, Clark DS, Blanch HW. Estradiol stimulates the biosynthetic pathways of breast cancer cells: detection by metabolic flux analysis. Metab Eng. 2006;8(6):639–52.

    CAS  PubMed  Google Scholar 

  102. Liu KJ, Kleps R, Henderson T, Nyhus L. 13C NMR study of hepatic pyruvate carboxylase activity in tumor rats. Biochem Biophys Res Commun. 1991;179(1):366–71.

    CAS  PubMed  Google Scholar 

  103. Zeczycki TN, Maurice MS, Attwood PV. Inhibitors of pyruvate carboxylase. Open Enzym Inhib J. 2010;3:8–26.

    CAS  PubMed Central  PubMed  Google Scholar 

  104. Bahl JJ, Matsuda M, DeFronzo RA, Bressler R. In vitro and in vivo suppression of gluconeogenesis by inhibition of pyruvate carboxylase. Biochem Pharmacol. 1997;53(1):67–74.

    CAS  PubMed  Google Scholar 

  105. Scrutton MC. Pyruvate carboxylase. Studies of activator-independent catalysis and of the specificity of activation by acyl derivatives of coenzyme A for the enzyme from rat liver. J Biol Chem. 1974;249(22):7057–67.

    CAS  PubMed  Google Scholar 

  106. Scrutton MC, Fatebene F. Inhibition of rat liver pyruvate carboxylase by acetoacetyl-CoA. FEBS Lett. 1976;62(2):220–5.

    CAS  PubMed  Google Scholar 

  107. Keech B, Barritt GJ. Allosteric activation of sheep kidney pyruvate carboxylase by the magnesium ion (Mg2+) and the magnesium adenosine triphosphate ion (MgATP2-). J Biol Chem. 1967;242(9):1983–7.

    CAS  PubMed  Google Scholar 

  108. Tonon FA, Kemmelmeier FS, Bracht A, Ishii-Iwamoto EL, Nascimento EA. Metabolic effects of oxalate in the perfused rat liver. Comp Biochem Physiol B Biochem Mol Biol. 1998;121(1):91–7.

    CAS  PubMed  Google Scholar 

  109. Thonpho A, Rojvirat P, Jitrapakdee S, MacDonald MJ. Characterization of the distal promoter of the human pyruvate carboxylase gene in pancreatic beta cells. PLoS One. 2013;8(1):e55139.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Wang D, Yang H, De Braganca KC, Lu J, Yu Shih L, Briones P, et al. The molecular basis of pyruvate carboxylase deficiency: mosaicism correlates with prolonged survival. Mol Genet Metab. 2008;95(1–2):31–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  111. Jitrapakdee S, Gong Q, MacDonald MJ, Wallace JC. Regulation of rat pyruvate carboxylase gene expression by alternate promoters during development, in genetically obese rats and in insulin-secreting cells. Multiple transcripts with 5′-end heterogeneity modulate translation. J Biol Chem. 1998;273(51):34422–8.

    CAS  PubMed  Google Scholar 

  112. Jitrapakdee S. Transcription factors and coactivators controlling nutrient and hormonal regulation of hepatic gluconeogenesis. Int J Biochem Cell Biol. 2012;44(1):33–45.

    CAS  PubMed  Google Scholar 

  113. Thonpho A, Sereeruk C, Rojvirat P, Jitrapakdee S. Identification of the cyclic AMP responsive element (CRE) that mediates transcriptional regulation of the pyruvate carboxylase gene in HepG2 cells. Biochem Biophys Res Commun. 2010;393(4):714–9.

    CAS  PubMed  Google Scholar 

  114. Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 2001;413(6852):179–83.

    CAS  PubMed  Google Scholar 

  115. Le Lay J, Tuteja G, White P, Dhir R, Ahima R, Kaestner KH. CRTC2 (TORC2) contributes to the transcriptional response to fasting in the liver but is not required for the maintenance of glucose homeostasis. Cell Metab. 2009;10(1):55–62.

    PubMed Central  PubMed  Google Scholar 

  116. Rojvirat P, Chavalit T, Muangsawat S, Thonpho A, Jitrapakdee S. Functional characterization of the proximal promoter of the murine pyruvate carboxylase gene in hepatocytes: role of multiple gc boxes. Biochim Biophys Acta. 2011;1809(10):541–8.

    CAS  PubMed  Google Scholar 

  117. Chavalit T, Rojvirat P, Muangsawat S, Jitrapakdee S. Hepatocyte nuclear factor 4alpha regulates the expression of the murine pyruvate carboxylase gene through the HNF4-specific binding motif in its proximal promoter. Biochim Biophys Acta. 2013;1829(10):987–99.

    CAS  PubMed  Google Scholar 

  118. Louet JF, Chopra AR, Sagen JV, An J, York B, Tannour-Louet M, et al. The coactivator SRC-1 is an essential coordinator of hepatic glucose production. Cell Metab. 2010;12(6):606–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Jitrapakdee S, Slawik M, Medina-Gomez G, Campbell M, Wallace JC, Sethi JK, et al. The peroxisome proliferator-activated receptor-gamma regulates murine pyruvate carboxylase gene expression in vivo and in vitro. J Biol Chem. 2005;280(29):27466–76.

    CAS  PubMed  Google Scholar 

  120. Sunyakumthorn P, Boonsaen T, Boonsaeng V, Wallace JC, Jitrapakdee S. Involvement of specific proteins (Sp1/Sp3) and nuclear factor Y in basal transcription of the distal promoter of the rat pyruvate carboxylase gene in beta-cells. Biochem Biophys Res Commun. 2005;329(1):188–96.

    CAS  PubMed  Google Scholar 

  121. Pedersen KB, Buckley RS, Scioneaux R. Glucose induces expression of rat pyruvate carboxylase through a carbohydrate response element in the distal gene promoter. Biochem J. 2010;426(2):159–70.

    CAS  PubMed  Google Scholar 

  122. Kendrick AA, Choudhury M, Rahman SM, McCurdy CE, Friederich M, Van Hove JL, et al. Fatty liver is associated with reduced SIRT3 activity and mitochondrial protein hyperacetylation. Biochem J. 2011;433(3):505–14.

    CAS  PubMed Central  PubMed  Google Scholar 

  123. Yang J, Reshef L, Cassuto H, Aleman G, Hanson RW. Aspects of the control of phosphoenolpyruvate carboxykinase gene transcription. J Biol Chem. 2009;284(40):27031–5.

    CAS  PubMed  Google Scholar 

  124. Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, et al. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 2007;5(4):313–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  125. She P, Burgess SC, Shiota M, Flakoll P, Donahue EP, Malloy CR, et al. Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes. 2003;52(7):1649–54.

    CAS  PubMed  Google Scholar 

  126. Koo SH, Flechner L, Qi L, Zhang X, Screaton RA, Jeffries S, et al. The CREB coactivator TORC2 is a key regulator of fasting glucose metabolism. Nature. 2005;437(7062):1109–11.

    CAS  PubMed  Google Scholar 

  127. Groen AK, van Roermund CW, Vervoorn RC, Tager JM. Control of gluconeogenesis in rat liver cells. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagon. Biochem J. 1986;237(2):379–89.

    CAS  PubMed  Google Scholar 

  128. Groen AK, Vervoorn RC, Van der Meer R, Tager JM. Control of gluconeogenesis in rat liver cells. I. Kinetics of the individual enzymes and the effect of glucagon. J Biol Chem. 1983;258(23):14346–53.

    CAS  PubMed  Google Scholar 

  129. Samuel VT, Beddow SA, Iwasaki T, Zhang XM, Chu X, Still CD, et al. Fasting hyperglycemia is not associated with increased expression of PEPCK or G6Pc in patients with Type 2 Diabetes. Proc Natl Acad Sci U S A. 2009;106(29):12121–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Kumashiro N, Beddow SA, Vatner DF, Majumdar SK, Cantley JL, Guebre-Egziabher F, et al. Targeting pyruvate carboxylase reduces gluconeogenesis and adiposity and improves insulin resistance. Diabetes. 2013;62(7):2183–94.

    CAS  PubMed  Google Scholar 

  131. Owen MR, Halestrap AP. The mechanisms by which mild respiratory chain inhibitors inhibit hepatic gluconeogenesis. Biochim Biophys Acta. 1993;1142(1–2):11–22.

    CAS  PubMed  Google Scholar 

  132. Gonzalez-Manchon C, Ayuso MS, Parrilla R. Control of hepatic gluconeogenesis: role of fatty acid oxidation. Arch Biochem Biophys. 1989;271(1):1–9.

    CAS  PubMed  Google Scholar 

  133. Wimhurst JM, Manchester KL. Some aspects of the kinetics of rat liver pyruvate carboxylase. Biochem J. 1970;120(1):79–93.

    CAS  PubMed  Google Scholar 

  134. Robinson BH. Lactic acidemia and mitochondrial disease. Mol Genet Metab. 2006;89(1–2):3–13.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by funding from the WCU program through the National Research Foundation of Korea (R32-10064) (N.H.J., R.A.H.) and a Merit Award from the Department of Veterans Affairs (R.A.H.) and by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (2010–0008815) (N.H.J.).

Conflict of interest

The authors of this review have no conflict of interest in the material presented.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Harris.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeoung, N.H., Harris, C.R. & Harris, R.A. Regulation of pyruvate metabolism in metabolic-related diseases. Rev Endocr Metab Disord 15, 99–110 (2014). https://doi.org/10.1007/s11154-013-9284-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-013-9284-2

Keywords

Navigation