Skip to main content
Log in

A novel sulfamic acid functionalized nano-catalyst on the basis of calix[4]resorcinarene for the green one-pot synthesis of 2H-indazolo[2,1-b]phthalazine-triones under thermal solvent-free conditions

  • Published:
Reaction Kinetics, Mechanisms and Catalysis Aims and scope Submit manuscript

Abstract

N-propyl sulfamic acid supported nano-catalyst on the basis of calix[4]resorcinarene was prepared via the efficient and facile reaction of amine functionalized polycalix[4]resorcinarene with chlorosulfonic acid. The achieved catalytic system was characterized using some spectroscopic techniques such as Fourier transform Infrared (FT-IR) spectroscopy, field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and CHNS elemental analysis. This newly developed acidic catalyst was employed efficiently in a one-pot three-component condensation reaction of aromatic aldehydes, dimedone and phthalhydrazide for the synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives through an easy and eco-friendly methodology. The catalyst was easily separated from the reaction mixture by simple filtration and the desired products were achieved in good to excellent yields in short reaction times.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5

Similar content being viewed by others

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University, Oxford

    Google Scholar 

  2. Zhang W, Cue B (2012) Green techniques for organic synthesis and medicinal chemistry. Wiley, Chichester

    Book  Google Scholar 

  3. Mondloch JE, Bayram E, Finke RG (2012) A review of the kinetics and mechanisms of formation of supported-nanoparticle heterogeneous catalysts. J Mol Catal A 355:1–38

    Article  CAS  Google Scholar 

  4. Dawson R, Cooper AI, Adams DJ (2012) Nanoporous organic polymer networks. Prog Polym Sci 37:530–563

    Article  CAS  Google Scholar 

  5. Kaur P, Hupp JT, Nguyen ST (2011) Porous organic polymers in catalysis: opportunities and challenges. ACS Catal 1:819–835

    Article  CAS  Google Scholar 

  6. Molla RA, Iqubal MA, Ghosh K, Kamaluddin, Islam SM (2015) Nitrogen enriched mesoporous organic polymer anchored copper(II) material: an efficient and reusable catalyst for the synthesis of esters and amides from aromatic systems. Dalton Trans 44:6546–6559

    Article  CAS  PubMed  Google Scholar 

  7. Choi DH, Ryoo R (2010) Template synthesis of ordered mesoporous organic polymeric materials using hydrophobic silylated KIT-6 mesoporous silica. J Mater Chem 20:5544–5550

    Article  CAS  Google Scholar 

  8. Kundu SK, Bhaumik A (2015) Pyrene-based porous organic polymers as efficient catalytic support for the synthesis of biodiesels at room temperature. ACS Sustain Chem Eng 3:1715–1723

    Article  CAS  Google Scholar 

  9. Li B, Guan Z, Yang X, Wang WD, Wang W, Hussain I, Song K, Tan B, Li T (2014) Multifunctional microporous organic polymers. J Mater Chem A 2:11930–11939

    Article  CAS  Google Scholar 

  10. Suresh VM, Bonakala S, Atreya HS, Balasubramanian S, Maji TK (2014) Amide functionalized microporous organic polymer (Am-MOP) for selective CO2 sorption and catalysis. ACS Appl Mater Interfaces 6:4630–4637

    Article  CAS  PubMed  Google Scholar 

  11. Climent MJ, Corma A, Iborra S (2012) Homogeneous and heterogeneous catalysts for multicomponent reactions. RSC Adv 2:16–58

    Article  CAS  Google Scholar 

  12. Zhang Q, Luo J, Wei Y (2010) A silica gel supported dual acidic ionic liquid: an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Green Chem 12:2246–2254

    Article  CAS  Google Scholar 

  13. Shaterian HR, Yarahmadi H, Ghashang M (2008) Silica supported perchloric acid (HClO4–SiO2): an efficient and recyclable heterogeneous catalyst for the one-pot synthesis of amidoalkyl naphthols. Tetrahedron 64:1263–1269

    Article  CAS  Google Scholar 

  14. Asif M (2012) Some recent approaches of biologically active substituted pyridazine and phthalazine drugs. Curr Med Chem 19:2984–2991

    Article  CAS  PubMed  Google Scholar 

  15. El-Sakka SS, Soliman AH, Imam AM (2009) Synthesis, antimicrobial activity and electron impact of mass spectra of phthalazine-1,4-dione derivatives. Afinidad 66:167–172

    CAS  Google Scholar 

  16. Singh S, Yadav A, Meena AK, Singh U, Singh B, Gaurav A, Rao MM, Panda P, Singh R (2010) Pharmacological action and SAR of phthalazine derivatives. Int J Chem Anal Sci 1:79–87

    CAS  Google Scholar 

  17. Ryu CK, Park RE, Ma MY, Nho JH (2007) Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones. Bioorg Med Chem Lett 17:2577–2580

    Article  CAS  PubMed  Google Scholar 

  18. Sun XY, Wei CX, Deng XQ, Sun ZG, Quan ZS (2010) Evaluation of the anticonvulsant activity of 6-(4-chlorophenyoxy)-tetrazolo[5,1-a]phthalazine in various experimental seizure models in mice. Pharmacol Rep 62:273–277

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Guan LP, Sun XY, Wei CX, Chai KY, Quan ZS (2009) Synthesis and anticonvulsant activity of 6-alkoxy-[1,2,4]triazolo[3,4-a] phthalazines. Chem Bio Drug Des 73:313–319

    Article  CAS  Google Scholar 

  20. Li J, Zhao YF, Yuan XY, Xu JX, Gong P (2006) Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines. Molecules 11:574–582

    Article  CAS  PubMed  Google Scholar 

  21. Watanabe N, Kabasawa Y, Takase Y, Matsukura M, Miyazaki K, Ishihara H, Kodama K, Adachi H (1998) 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phosphodiesterase. J Med Chem 41:3367–3372

    Article  CAS  PubMed  Google Scholar 

  22. Kidwai M, Jahan A, Chauhan R, Mishra N, Neeraj K (2012) Dodecylphosphonic acid (DPA): a highly efficient catalyst for the synthesis of 2H-indazolo[2,1-b]phthalazine-triones under solvent-free conditions. Tetrahedron Lett 53:1728–1731

    Article  CAS  Google Scholar 

  23. Nagarapu L, Bantu R, Mereyala HB (2009) TMSCl-mediated one-pot, three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones. J Heterocycl Chem 46:728–731

    Article  CAS  Google Scholar 

  24. Khurana JM, Magoo D (2009) Efficient one-pot syntheses of 2H-indazolo[2,1-b] phthalazine-triones by catalytic H2SO4 in water–ethanol or ionic liquid. Tetrahedron Lett 50:7300–7303

    Article  CAS  Google Scholar 

  25. Wang HJ, Zhang XN, Zhang ZH (2010) Highly efficient three-component synthesis of 1H-indazolo[1,2-b]phthalazinetrione derivatives catalyzed by heteropolyacids. Monatsh Chem 141:425–430

    Article  CAS  Google Scholar 

  26. Hasaninejed A, Kazerooni MR, Zare A (2012) Solvent-free, one-pot, four-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones using sulfuric acid-modified PEG-6000 as a green recyclable and biodegradable polymeric catalyst. Catal Today 196:148–155

    Article  CAS  Google Scholar 

  27. Mosaddegh E, Hassankhani A (2011) A rapid, one-pot, four-component route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron Lett 52:488–490

    Article  CAS  Google Scholar 

  28. Shaterian HR, Hosseinian A, Ghashang M (2009) Reusable silica supported poly phosphoric acid catalyzed three-component synthesis of 2H-indazolo[2,1-b]phthalazine-trione derivatives. Arkivoc 2:59–67

    Google Scholar 

  29. Shaterian HR, Ghashang M, Feyzi M (2008) Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo [2,1-b] phthalazine-triones. Appl Catal A 345:128–133

    Article  CAS  Google Scholar 

  30. Sabitha G, Srinivas C, Raghavendar A, Yadav JS (2010) Phosphomolybdic acid (PMA)–SiO2 as a heterogeneous solid acid catalyst for the one-pot synthesis of 2H-Indazolo[1,2-b]phthalazine-triones. Helv Chim Acta 93:1375–1380

    Article  CAS  Google Scholar 

  31. Sayyafi M, Seyyedhamzeh M, Khavasi HR, Bazgir A (2008) One-pot, three-component route to 2H-indazolo [2,1-b] phthalazine-triones. Tetrahedron 64:2375–2378

    Article  CAS  Google Scholar 

  32. Wang X, Ma WW, Wu LQ, Yan FL (2010) Synthesis of 2H-Indazolo[2,1-b] phthalazine- 1,6,11(13H)-trione derivatives using wet cyanuric chloride under solvent-free condition. J Chin Chem Soc 57:1341–1345

    Article  CAS  Google Scholar 

  33. Hamidian H, Fozooni S, Hassankhani A, Mohammadi SZ (2011) One-pot and efficient synthesis of triazolo[1,2-a]indazole-triones via reaction of arylaldehydes with urazole and dimedone catalyzed by silica nanoparticles prepared from rice husk. Molecules 16:9041–9048

    Article  CAS  PubMed  Google Scholar 

  34. Mouradzadegun A, Kiasat AR, Kazemian Fard P (2012) 3D-network porous polymer based on calix[4] resorcinarenes as an efficient phase transfer catalyst in regioselective conversion of epoxides to azidohydrins. Catal Commun 29:1–5

    Article  CAS  Google Scholar 

  35. Mouradzadegun A, Ghasem Hezave F, Karimnia M (2010) Reductive alkylation of pentaphenylthiopyrylium perchlorate: an approac to regiospecific synthesis of hexasubstituted 2H-thiopyrans. Phosphorus Sulfur Silicon Relat Elem 185:84–87

    Article  CAS  Google Scholar 

  36. Kiasat AR, Mouradzadegun A, Elahi S, Fallah-Mehrjardi M (2010) Al(HSO4)3/silica gel as a novel catalytic system for the ring opening of epoxides with thiocyanate anion under solvent-free conditions. Chin Chem Lett 21:146–150

    Article  CAS  Google Scholar 

  37. Mouradzadegun A, Abadast F (2013) An improved, safe, and efficient conversion of triarylpyrylium perchlorates to corresponding cyanodienones using amberlite. Monatsh Chem 144:375–379

    Article  CAS  Google Scholar 

  38. Mouradzadegun A, Mostafavi MA (2016) Copper-loaded hypercrosslinked polymer decorated with pendant amine groups: a green and retrievable catalytic system for quick [3 + 2] Huisgen cycloaddition in water. RSC Adv 6:42522–42531

    Article  CAS  Google Scholar 

  39. Mouradzadegun A, Gheitasvand N (2005) Efficient reduction of thiopyrylium salts to corresponding 2H- and 4H-thiopyrans under solvent-free condition: regioselectivity and mechanism. Phosphorus Sulfur Silicon Relat Elem 180:1385–1388

    Article  CAS  Google Scholar 

  40. Mouradzadegun A, Abadast F (2013) Thermally-induced ring contraction as a novel and straightforward route for the synthesis of 2-furyl acetonitrile derivatives. Tetrahedron Lett 54:2641–2644

    Article  CAS  Google Scholar 

  41. Mouradzadegun A, Elahi S, Abadast F (2014) One-pot synthesis of tweezer-like calix[4]resorcinarene decorated with pendant heterocyclic moieties: an efficient and recyclable heterogeneous ptc for the preparation of azidohydrins in water. Catal Lett 144:1636–1641

    Article  CAS  Google Scholar 

  42. Mouradzadegun A, Elahi S, Abadast F (2014) Synthesis of a 3D-network polymer supported Bronsted acid ionic liquid based on calix[4]-resorcinarene via two post-functionalization steps: a highly efficient and recyclable acid catalyst for the preparation of symmetrical bisamides. RSC Adv 4:31239–31248

    Article  CAS  Google Scholar 

  43. Mouradzadegun A, Abadast F (2014) An improved organic/inorganic solid receptor for colorimetric cyanide-chemosensing in water: towards new mechanism aspects, simplistic use and portability. Chem Commun 50:15983–15986

    Article  CAS  Google Scholar 

  44. Mouradzadegun A, Dianat S (2009) Facile and selective solvent-free synthesis of 2-isoxazolines under microwave irradiation. J Heterocycl Chem 46:778–781

    Article  CAS  Google Scholar 

  45. Tunstad LM, Tucker JA, Dalcanale E, Weiser J, Bryant JA, Sherman JC, Helgeson RC, Knobler CB, Cram DJ (1989) Host-guest complexation. 48. Octal building blocks for cavitands and carcerands. J Org Chem 54:1305–1312

    Article  CAS  Google Scholar 

  46. Altshuler H, Ostapova E, Fedyaeva O, Sapozhnikova L, Altshuler O (2002) Novel network polymers based on calixresorcinarenes. Macromol Symp 181:1–5

    Article  CAS  Google Scholar 

  47. Karimi B, Zareyee D (2008) Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Org Lett 10:3989–3992

    Article  CAS  PubMed  Google Scholar 

  48. Saha M, Phukan S, Jamatia R, Mitra S, Pal AK (2013) Solvent free, Ni-nanoparticle catalyzed greener synthesis and photophysical studies of novel 2H-indazolo[2,1-b] phthalazine-trione derivatives. RSC Adv 3:1714–1721

    Article  CAS  Google Scholar 

  49. Shukla G, Verma RK, Verma GK, Singh MS (2011) Solvent-free sonochemical one-pot three-component synthesis of 2H-indazolo [2,1-b] phthalazine-1, 6, 11-triones and 1H-pyrazolo [1,2-b] phthalazine-5, 10-diones. Tetrahedron Lett 52:7195–7198

    Article  CAS  Google Scholar 

  50. Mirhosseini-Eshkevari B, Ghasemzadeh MA, Safaei-Ghomi J (2015) An efficient and green one-pot synthesis of indazolo[1,2-b]-phthalazinetriones via three-component reaction of aldehydes, dimedone, and phthalhydrazide using Fe3O4@SiO2 core-shell nanoparticles. Res Chem Intermed 41:7703–7714

    Article  CAS  Google Scholar 

  51. Godajdar BM, Kiasat AR, Hashemi MM (2013) One-pot synthesis of 2H-indazolo [2,1-b] phthalazinetrione catalyzed by magnetic room temperature dicationic ionic liquid under solvent-free conditions. Heterocycles 87:559–570

    Article  CAS  Google Scholar 

  52. Alinasab Amiri A, Javanshir S, Dolatkhah Z, Dekamin MG (2015) SO3H-functionalized mesoporous silica materials as solid acid catalyst for facile and solvent-free synthesis of 2H-indazolo[2,1-b]phthalazine-1,6,11-trione derivatives. New J Chem 39:9665–9671

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Research Council at the University of Shahid Chamran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Mouradzadegun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1954 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mouradzadegun, A., Mostafavi, M.A. & Ganjali, M.R. A novel sulfamic acid functionalized nano-catalyst on the basis of calix[4]resorcinarene for the green one-pot synthesis of 2H-indazolo[2,1-b]phthalazine-triones under thermal solvent-free conditions. Reac Kinet Mech Cat 124, 741–755 (2018). https://doi.org/10.1007/s11144-018-1363-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11144-018-1363-7

Keywords

Navigation