Skip to main content
Log in

A retrial system with two input streams and two orbit queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

Two independent Poisson streams of jobs flow into a single-server service system having a limited common buffer that can hold at most one job. If a type-\(i\) job (\(i=1,2\)) finds the server busy, it is blocked and routed to a separate type-\(i\) retrial (orbit) queue that attempts to re-dispatch its jobs at its specific Poisson rate. This creates a system with three dependent queues. Such a queueing system serves as a model for two competing job streams in a carrier sensing multiple access system. We study the queueing system using multi-dimensional probability generating functions, and derive its necessary and sufficient stability conditions while solving a Riemann–Hilbert boundary value problem. Various performance measures are calculated and numerical results are presented. In particular, numerical results demonstrate that the proposed multiple access system with two types of jobs and constant retrial rates provides incentives for the users to respect their contracts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Apply Rouché’s theorem to \(R(x,y)\) to get (a1), and the “maximum modulus principal” to the analytic function \(k(y)\) in \(\mathbb C -[y_1,y_2]-[y_3,y_4]\) to get (b1). (c1) follows from Remark 1.

References

  1. Artalejo, J.R.: Accessible bibliography on retrial queues. Math. Comput. Model. 30, 223–233 (1999)

    Google Scholar 

  2. Artalejo, J.R., Gómez-Corral, A.: On a single server queue with negative arrivals and request repeated. J. Appl. Probab. 36, 907–918 (1999)

    Article  Google Scholar 

  3. Artalejo, J.R., Gómez-Corral, A.: Retrial Queueing Systems: A Computational Approach. Springer, Berlin (2008)

    Book  Google Scholar 

  4. Artalejo, J.R., Gómez-Corral, A., Neuts, M.F.: Analysis of multiserver queues with constant retrial rate. Eur. J. Oper. Res. 135, 569–581 (2001)

    Article  Google Scholar 

  5. Avrachenkov, K., Yechiali, U.: Retrial networks with finite buffers and their application to internet data traffic. Probab. Eng. Inf. Sci. 22, 519–536 (2008)

    Article  Google Scholar 

  6. Avrachenkov, K., Morozov, E.: Stability analysis of GI/G/c/K retrial queue with constant retrial rate. Inria Research, Report no. 7335 (2010)

  7. Avrachenkov, K., Yechiali, U.: On tandem blocking queues with a common retrial queue. Comput. Oper. Res. 37, 1174–1180 (2010)

    Article  Google Scholar 

  8. Avrachenkov, K., Morozov, E., Nekrasova, R., Steyaert, B.: On the stability and simulation of a retrial system with constant retrial rate. In: Proceedings of the 9th International Workshop on Retrial Queues, June 2012

  9. Bertsekas, D., Gallager, R.: Data Networks, 2nd ed. Prentice-Hall, Upper Saddle River (1992)

  10. Blanc, J.P.C.: Asymptotic analysis of a queueing system with a two-dimensional state space. J. Appl. Probab. 21, 870–886 (1984)

    Article  Google Scholar 

  11. Blanc, J.P.C., Iasnogorodski, R., Nain, P.: Analysis of the M/GI/1 \(\rightarrow \)./M/1 queueing model. Queueing Syst. 3, 129–156 (1988)

    Article  Google Scholar 

  12. Bocharov, P.P., D’Apice, C., Pechinkin, A.V., Salerno, S.: Queueing Theory. Modern Probability and Statistics Series. VSP, Utrecht (2004)

    Google Scholar 

  13. Brandon, J., Yechiali, U.: A tandem Jackson network with feedback to the first node. Queueing Syst. 9, 337–352 (1991)

    Article  Google Scholar 

  14. Choi, B.D., Park, K.K., Pearce, C.E.M.: An M/M/1 retrial queue with control policy and general retrial times. Queueing Syst. 14, 275–292 (1993)

    Article  Google Scholar 

  15. Choi, B.D., Rhee, K.H., Park, K.K.: The M/G/1 retrial queue with retrial rate control policy. Probab. Eng. Inf. Sci. 7, 29–46 (1993)

    Article  Google Scholar 

  16. Cohen, J.W., Boxma, O.J.: Boundary Value Problems in Queueing System Analysis. North Holland, Amsterdam (1983)

    Google Scholar 

  17. Dudin, A., Klimenok, V.: A retrial BMAP/SM/1 system with linear repeated requests. Queueing Syst. 34, 47–66 (2000)

    Article  Google Scholar 

  18. Falin, G.I.: On a multiclass batch arrival retrial queue. Adv. Appl. Probab. 20, 483–487 (1988)

    Article  Google Scholar 

  19. Falin, G.I., Tempelton, J.G.C.: Retrial Queues. CRS Press, Boca Raton (1997)

    Book  Google Scholar 

  20. Fayolle, G.: A simple telephone exchange with delayed feedback. In: Boxma, O.J., Cohen, J.W., Tijms, H.C. (eds.) Teletraffic Analysis and Computer Performance Evaluation. Elsevier, North-Holland (1986)

    Google Scholar 

  21. Fayolle, G., Iasnogorodski, R.: Two coupled processors: the reduction to a Riemann–Hilbert problem. Z. Wahrscheinlichkeitstheorie verw. Gebiete. 47, 325–351 (1979)

    Article  Google Scholar 

  22. Fayolle, G., King, P.J.B., Mitrani, I.: The solution of certain two-dimensional Markov models. Adv. Appl. Probab. 14, 295–308 (1982)

    Article  Google Scholar 

  23. Fayolle, G., Iasnogorodski, R., Mitrani, I.: The distribution of sojourn times in a queueing network with overtaking: reduction to a boundary problem. In: Agrawala, A.K., Tripathi, S.K. (eds.) Proceedings of Performance, pp. 477–486. College Park, MD, 25–27 May 1983

  24. Ghakov, F.D.: Boundary Value Problems. Pergamon Press, Oxford (1961)

    Google Scholar 

  25. Grishechkin, S.A.: Multiclass batch arrival retrial queues analyzed as branching processes with immigration. Queueing Syst. 11, 395–418 (1992)

    Article  Google Scholar 

  26. Kulkarni, V.G.: Expected waiting times in a multiclass batch arrival retrial queue. J. Appl. Probab. 23, 144–154 (1986)

    Article  Google Scholar 

  27. Kulkarni, V.G.: Modeling and Analysis of Stochastic Systems. Chapman & Hall, London (1995)

    Google Scholar 

  28. Langaris, C., Dimitriou, I.: A queueing system with \(n\)-phases of service and \((n-1)\)-types of retrial customers. Eur. J. Oper. Res. 205, 638–649 (2010)

    Article  Google Scholar 

  29. Li, Q.-L., Ying, Y., Zhao, Y.Q.: A BMAP/G/1 retrial queue with a server subject to breakdowns and repairs. Ann. Oper. Res. 141, 233–270 (2006)

    Article  Google Scholar 

  30. Moutzoukis, E., Langaris, C.: Non-preemptive priorities and vacations in a multiclass retrial queueing system. Stoch. Models 12(3), 455–472 (1996)

    Article  Google Scholar 

  31. Mushkelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (1953)

    Google Scholar 

  32. Nain, P.: Analysis of a two-node Aloha network with infinite capacity buffers. In: Hasegawa, T., Takagi, H., Takahashi, Y. (eds.) Proc. Int. Seminar on Computer Networking and Performance Evaluation. Tokyo, Japan, 18–20 Sep 1985

  33. Szpankowski, W.: Stability conditions for some multiqueue distributed systems: buffered random access systems. Adv. Appl. Probab. 26, 498–515 (1994)

    Article  Google Scholar 

  34. van Leeuwaarden, J.S.H., Resing, J.A.C.: A tandem queue with coupled processors: computational issues. Queueing Syst. 50, 29–52 (2005)

    Article  Google Scholar 

  35. Yechiali, U.: Sequencing an N-stage process with feedback. Probab. Eng. Inf. Sci. 2, 263–265 (1988)

    Article  Google Scholar 

Download references

Acknowledgments

We thank anonymous reviewers for their comments which helped us to significantly improve the presentation of the results. We would also like to thank Efrat Perel for helping us in drawing the figure of the transition-rate diagram.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin Avrachenkov.

Appendix

Appendix

Lemma 1

Conditions (34) imply that either \(\alpha \lambda _1<\mu \mu _1\) or \(\alpha \lambda _2<\mu \mu _2\).

Proof

Assume that \(\alpha \lambda _1\ge \mu \mu _1\) and \(\alpha \lambda _2 \ge \mu \mu _2\)

Multiplying the first inequality in (34) by \(\mu \mu _1\) and using the definition of \(\lambda \) and \(\alpha \) gives

$$\begin{aligned} (\lambda _1+\lambda _2)(\lambda _1+\mu _1)< \mu \mu _1\le \alpha \lambda _1=(\lambda _1+\lambda _2+\mu _1+\mu _2)\lambda _1 \end{aligned}$$

which is true if and only if (a) \(\lambda _2\mu _1<\lambda _1 \mu _2\).

Multiplying now the second inequality in (34) by \(\mu \mu _2\) gives

$$\begin{aligned} (\lambda _1+\lambda _2)(\lambda _2+\mu _2)< \mu \mu _2\le \alpha \lambda _2=(\lambda _1+\lambda _2+\mu _1+\mu _2)\lambda _2 \end{aligned}$$

which is true if and only if (b) \(\lambda _1\mu _2<\lambda _2 \mu _1\).

Since inequalities (a) and (b) cannot be true simultaneously we conclude that either \(\alpha \lambda _1<\mu \mu _1\) or \(\alpha \lambda _2<\mu \mu _2\), which concludes the proof. \(\square \)

Lemma 2

Under conditions (34), (i) \(A(k(y),y)\not =0\) and (ii) \(B(k(y),y)\not =0\) for

\(y \in [y_1,y_2]\).

Equivalently, (iii) \(A(x,h(x))\not =0\) and (iv) \(B(x,h(x))\not =0\) for \(x\in C_{\sqrt{\hat{\mu }_1/\hat{\lambda }_1}}\).

Proof

From (39) and (41) we see that \(R(x,y)\) and \(B(x,y)\) vanish simultaneously if and only if

$$\begin{aligned} (1-x)(\lambda _1 x -\mu )+\lambda _2(1-y)x&= 0\\ \lambda (1-x)y +\mu _2(y-x)&= 0. \end{aligned}$$

The second equation gives \(x=(\lambda +\mu _2)y/((\lambda y +\mu _2))\). Plugging this value of \(x\) into the first equation yields (Hint: use \(\lambda =\lambda _1+\lambda _2\))

$$\begin{aligned} P_1(y):=(1-y) Q_1(y)=0 \end{aligned}$$

with \(Q_1(y):=\lambda \lambda _2 (\lambda +\mu _2)y^2 +(\lambda +\mu _2-\mu )\lambda \mu _2 y -\mu \mu _2^2=0\).

From \(\lim _{y\rightarrow \pm \infty }Q_1(y)=+\infty \) and \(Q_1(0)=-\mu \mu _2^2\) we conclude that the polynomial \(Q_1(y)\) has two real roots, \(y_{-}<0<y_+\) and that \(Q_1(y)<0\) for \(0\le y<y_+\). Since

$$\begin{aligned} Q_1(1)=\left( \frac{\lambda +\mu _2}{\mu \mu _2}\right) \left( \frac{\lambda }{\mu }\left( 1+\frac{\lambda _2}{\mu _2}\right) -1\right) <0, \end{aligned}$$
(84)

where the latter inequality holds under conditions (34), we conclude that \(Q_1(y)<0\) for \(y\in [0,1]\), which in turn implies that \(P_1(y)<0\) for \(y\in [0,1)\). The latter completes the proof of (ii) since \([y_1,y_2]\subset [0,1)\) [see (54)].

The proof of (i) is the same as the proof of (ii) up to interchanging incides \(1\) and \(2\).

Eqns (iii) and (iv) both follow from the fact that \(k([y_1,y_2]) =C_{\sqrt{\hat{\mu }_1/\hat{\lambda }_1}}\) (cf. Proposition 3-(11)) and the relation \(h(k(y))=y\) for \(y\in [y_1,y_2]\) (cf. Proposition 3-(d1)). \(\square \)

Lemma 3

Under Convention (35), \(h(x)\) is analytic for \(1<|x|<\sqrt{\hat{\mu }_1/\hat{\lambda }_1}\) and continuous for \(1\le |x|\le \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\).

Proof

We already know by Proposition 3 that \(h(x)\) is analytic for \(x\in \mathbb C -[x_1,x_2]-[x_3,x_4]\) where \(x_2\le 1<x_3\). It is therefore enough to show that \(\sqrt{\hat{\mu }_1/\hat{\lambda }_1}<x_3\) or, equivalently from (56) that \(e_{+}\left( \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\right) <0\). Easy algebra shows that \(e_+\left( \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\right) =-\sqrt{\hat{\mu }_1/\hat{\lambda }_1} \left( \left( \sqrt{\hat{\lambda }_1}-\sqrt{\hat{\mu }_1}\right) ^2 + \left( \sqrt{\hat{\lambda }_2}+\sqrt{\hat{\mu }_2}\right) ^2\right) <0\), which concludes the proof. \(\square \)

Lemma 4

Assume that conditions (34) hold. Define

$$\begin{aligned} x_0:=\frac{-(\lambda +\mu _1-\mu )\lambda \mu _1+\sqrt{((\lambda +\mu _1-\mu )\lambda \mu _1)^2 + 4 \lambda \lambda _1(\lambda +\mu _1)\mu \mu _1^2}}{2\lambda \lambda _1 (\lambda +\mu _1)} >1 \end{aligned}$$

If \(x_0\le \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\) and if \((\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\le \sqrt{\hat{\mu }_2/\hat{\lambda }_2}\) then \(A(x,h(x))\) has exactly one zero \(x=x_0\) in the region \(D_x:=\left\{ x\in \mathbb C : 1<|x|\le \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\right\} \) and this zero has multiplicity one. Otherwise \(A(x,h(x))\) has no zero in \(D_x\).

Proof

From (38) and (40) we see that \(R(x,y)\) and \(A(x,y)\) vanish simultaneously if and only if

$$\begin{aligned} (1-y)(\lambda _2 y -\mu )+\lambda _1(1-x)y&= 0 \end{aligned}$$
(85)
$$\begin{aligned} \lambda (1-y)x +\mu _1(x-y)&= 0. \end{aligned}$$
(86)

Eq. (86) gives

$$\begin{aligned} y=\frac{(\lambda +\mu _1)x}{\lambda x +\mu _1}. \end{aligned}$$
(87)

Plugging this value of \(y\) into (85) yields

$$\begin{aligned} \frac{1-x}{(\lambda x +\mu _1)^2}\,Q_2(x)=0 \end{aligned}$$

with \(Q_2(x):=\lambda \lambda _1 (\lambda +\mu _1) x^2 +(\lambda +\mu _1-\mu ) \lambda \mu _1 x -\mu \mu _1^2\).

Therefore, \(A(x,h(x))\) will vanish in the region \(D_x\) if and only if the polynomial \(Q_2(x)\) vanishes in \(D_x\). From \(\lim _{x\rightarrow \pm \infty }Q_2(x)=+\infty \), \(Q_2(0)=\mu \mu _1^2 <0\) and

$$\begin{aligned} Q_2(1)=\mu \mu _1 (\lambda +\mu _1) \left( \frac{\lambda }{\mu }+ \frac{\lambda \lambda _1}{\mu \mu _1}-1\right) < 0 \end{aligned}$$
(88)

we conclude that \(Q_2(x)\) has always two real zeros with opposite sign.

Let us first focus on the negative zero of \(Q_2(x)\), denoted by \(x_{-}\). Let us show that \(x_-\) cannot belong to the region \(D_x\) or, equivalently, that \(x_{-}\) cannot satisfies the inequalities \(-\sqrt{\hat{\mu }_1/\hat{\lambda }_1}\le x_{-}<-1\). Assume that \(-\sqrt{\hat{\mu }_1/\hat{\lambda }_1}\le x_{-}<-1\) and that \(A(x_{-},h(x_{-}))=0\). By (40) the latter equality implies (Hint: \(R(x_{-},h(x_{-}))=0\) by definition of \(h(x)\))

$$\begin{aligned} \lambda \mu (1-h(x_{-}))x_{-} +\mu \mu _1 (x_{-}-h(x_{-}))=0. \end{aligned}$$
(89)

Since \(-1\le h(x_{-})\le 1\) from Proposition 3-(e), we observe that \( (1-h(x_{-}))x_{-} \le 0\) and \((x_{-}-h(x_{-}))<0\) so that the l.h.s. of (89) cannot be equal to zero. Therefore, \(A(x),h(x))\) does not vanish at \(x=x_{-}\).

We now focus on the positive zero of \(Q_2(x)\), denoted by \(x_0\). Note that \(x_0>1\) from (88). If \(x_0> \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\) then clearly \(A(x,h(x))\) has no zero in \((1, \sqrt{\hat{\mu }_1/\hat{\lambda }_1}]\). If \(1<x_0 \le \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\) then \(A(x,h(x))\) as a unique zero in \((1, \sqrt{\hat{\mu }_1/\hat{\lambda }_1}]\), given by \(x=x_0\), provided that [see (87)] \(h(x_0)=(\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\le \sqrt{\hat{\mu }_2/\hat{\lambda }_2}\) since we know from Proposition 3-(b2) that the branch \(h(x)\) is such that \(|h(x)|\le \sqrt{\hat{\mu }_2/\hat{\lambda }_2}\) for all \(x\in \mathbb C \); if \((\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)>\sqrt{\hat{\mu }_2/\hat{\lambda }_2}\) then \(A(x,h(x))\) does not vanish in \((1, \sqrt{\hat{\mu }_1/\hat{\lambda }_1}]\).

We are left with proving that when \(A(x,h(x))\) vanishes at \(x=x_0\) then this zero has multiplicity one. From now on we assume that \(A(x_0,h(x_0))=0\).

From the definition of \(h(x)\) and (40) we get

$$\begin{aligned} 0=R(x,h(x))=\frac{\alpha }{\mu _2} A(x,h(x))+\mu [\lambda (1-h(x))x +\mu _1(x-h(x))]. \end{aligned}$$

Differentiating this equation w.r.t. \(x\) gives

$$\begin{aligned} 0=\frac{\alpha }{\mu _2} \frac{dA(x,h(x))}{\text {d}x} +\mu [-\lambda h^{\prime }(x)x +\lambda (1-h(x))+\mu _1(1-h^{\prime }(x))]. \end{aligned}$$
(90)

Assume that \(dA(x,h(x))/\text {d}x=0\) at point \(x=x_0\), namely, assume that \(A(x,h(x))\) has a zero of multiplicity at least two at \(x=x_0\). From (90) this implies

$$\begin{aligned} -\lambda h^{\prime }(x_0)x_0 +\lambda (1-h(x_0))+\mu _1(1-h^{\prime }(x_0)=0 \end{aligned}$$

that is

$$\begin{aligned} h^{\prime }(x_0)=\mu _1 \frac{\lambda +\mu _1}{(\lambda x_0+\mu _1)^2} \end{aligned}$$
(91)

with \(h(x_0)=(\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\) [see (87)].

On the other hand, letting \((x,y)=(x,h(x))\) in (38) yields

$$\begin{aligned} A(x,h(x))= ((1-h(x))(\lambda _2 h(x)-\mu )+\lambda _1 (1-x)h(x))\mu _2 x. \end{aligned}$$
(92)

Differentiating \(A(x,h(x)\) wrt \(x\) in (92) and letting \(x=x_0\) gives

$$\begin{aligned} \frac{\text {d}A(x,h(x))}{\text {d}x}|_{x=x_0}&= [ -h^{\prime }(x_0) (\lambda h(x_0)-\mu )+\lambda _2(1-h(x_0))h^{\prime }(x_0) \\&-\lambda _1 h(x_0)+\lambda _1(1-x_0)h^{\prime }(x_0)]\mu _2 x_0 \\&+ \frac{\mu _2}{x_0}A(x_0,h(x_0))\\&= [h^{\prime }(x_0)(-2\lambda _2 h(x_0)+\lambda _2+\mu +\lambda _1(1-x_0))-\lambda _1 h(x_0)]\mu _2 x_0 \\&+ \frac{\mu _2}{x_0}A(x_0,h(x_0))\\&= [h^{\prime }(x_0)(-2\lambda _2 h(x_0)+\lambda _2+\mu +\lambda _1(1-x_0))-\lambda _1 h(x_0)]\mu _2 x_0 \end{aligned}$$

since \(A(x_0,h(x_0))=0\). Therefore, \(dA(x,h(x))/\text {d}x=0\) at point \(x=x_0\) iff (note that \(x_0\not =0\))

$$\begin{aligned} h^{\prime }(x_0)(-2\lambda _2 h(x_0)+\lambda _2+\mu +\lambda _1(1-x_0))-\lambda _1 h(x_0)=0. \end{aligned}$$

Since \(-2\lambda _2 h(x_0)+\lambda _2+\mu +\lambda _1(1-x_0)<0\) because \(x_0>1\), we get

$$\begin{aligned} h^{\prime }(x_0)=\frac{\lambda _1 h(x_0)}{-2\lambda _2 h(x_0)+\lambda _2+\mu +\lambda _1(1-x_0)} \end{aligned}$$

with [see (87)] \(h(x_0)=(\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\), so that \(h^{\prime }(x_0)<0\). However, \(h^{\prime }(x_0)>0\) in (91). This yields a contradiction, thereby implying that \(dA(x,h(x))/\text {d}x\) does not vanish at point \(x=x_0\) when \(A(x,h(x))\) does or, equivalently, that \(x_0\) is a zero of multiplicity one. \(\square \)

Lemma 5

Under conditions (34) and Convention (35) the index \(\chi \) of the Riemann–Hilbert problem (the index is defined in (68)) is equal to zero.

Proof

Recall the definition of \(U(x)\) in (65). First, by studying \(U(\sqrt{\hat{\mu }_1/\hat{\lambda }_1}e^{i\theta })\) for \(\theta \in [0,2\pi )\) it is easily seen that \(U(x)\) describes a closed (and simple) contour when \(x\) describes the circle \(C_{\sqrt{\hat{\mu }_1/\hat{\lambda }_1}}\); moreover, for \(x\in C_{\sqrt{\hat{\mu }_1/\hat{\lambda }_1}}, U(x)\) takes only real values when \(x\in \{- \sqrt{\hat{\mu }_1/\hat{\lambda }_1}, \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\}\).

As a result, we will show that \(\chi =0\) if we show that

$$\begin{aligned} U\left( -\sqrt{\hat{\mu }_1/\hat{\lambda }_1}\right) \times U\left( \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\right) >0, \end{aligned}$$
(93)

since (93) will imply that the contour defined by \(\{U(x): |x|=\sqrt{\hat{\mu }_1/\hat{\lambda }_1}\}\) does not contain the point \(x=0\) in its interior, so that by definition of the index, \(\chi =0\).

We have from (40)–(41) (Hint: \(R(x,h(x))=0\) by definition of \(h(x))\))

$$\begin{aligned} A(x,h(x))&= -\frac{\mu \mu _2}{\alpha } (\lambda (1-h(x))x +\mu _1(x-h(x)) \end{aligned}$$
(94)
$$\begin{aligned} B(x,h(x))&= -\frac{\mu \mu _1}{\alpha } (\lambda (1-x)h(x) +\mu _2(h(x)-x)). \end{aligned}$$
(95)

Define \(x_{-}:=- \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\) and \(x_{+}:= \sqrt{\hat{\mu }_1/\hat{\lambda }_1}\).

By Convention (35) we know that \(x_{-}<-1\) and \(x_{+}>1\). Also note that \(h(x_{-})=y_1<1\) and \(h(x_{+})=y_2<1\) from Proposition 3-(d2) and (54). With this, it it is easily seen from (94)–(95) that

$$\begin{aligned} A(x_{-},h(x_{-}))>0 \quad \hbox {and}\quad A(x_{+},h(x_{+}))<0 \end{aligned}$$

and

$$\begin{aligned} B(x_{-},h(x_{-}))<0 \quad \hbox {and}\quad B(x_{+},h(x_{+}))>0 \end{aligned}$$

so that

$$\begin{aligned} A(x_{-},h(x_{-}))/B(x_{-},h(x_{-}))<0 \quad \hbox {and}\quad (A(x_{+},h(x_{+}))/B(x_{+},h(x_{+}))<0. \end{aligned}$$

and, therefore,

$$\begin{aligned} A(x_{-},h(x_{-}))/B(x_{-},h(x_{-}))\,A(x_{+},h(x_{+}))/B(x_{+},h(x_{+}))>0. \end{aligned}$$
(96)

The above shows that (93) is true if \(r=0\) in the definition of \(U(x)\) since in this case \(U(x)=A(x,h(x))/B(x,h(x))\).

Assume that \(r=1\) in the definition of \(U(x)\) with \(x_0<x_+\) and \((\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\le \sqrt{\hat{\mu }_2/\hat{\lambda }_2}\). Since \((x-x_0)<0\) for \(x=x_{-}\) and \((x-x_0)>0\) for \(x=x_{+}\) we conclude from (96) that \(U(x_-)>0\) and \(U(x_+)>0\), thereby showing that (93) is also true in this case.

It remains to investigate the case when \(r=1\) with \(x_0=x_+\) and \((\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\le \sqrt{\hat{\mu }_2/\hat{\lambda }_2}\). Clearly, \(U(x_{-})>0\) since, from (96), \(A(x_{-},h(x_{-}))/B(x_{-},h(x_{-}))<0\) and \((x_{-}-x_{0})<0\) because \(x_{-}<-1\).

Let us focus on the sign of \(U(x_{+})\). We know that the mapping \(x\rightarrow U(x)\) is continuous for \(|x|\le x_{+}\) and that \(U(x_+)\not =0\) when \(x_+=x_0\). Since we have shown that \(U(x_{+})>0\) when \(x_0<x_+\) and \((\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\le \sqrt{\hat{\mu }_2/\hat{\lambda }_2}\), we deduce, by continuity, that necessarily \(U(x_+)>0\) when \(x_{+}=x_0\) and \((\lambda +\mu _1)x_0/(\lambda x_0+\mu _1)\le \sqrt{\hat{\mu }_2/\hat{\lambda }_2}\), which concludes the proof. \(\square \)

Lemma 6

Under condition (34) and Convention (35), \(B(k(y),y)\not =0\) for \(|y|=1, y\not =1\). Also, \(B(k(y),y)\) has a zero at \(y=1\), with multiplicity one.

Proof

Fix \(|y|=1, y\not = 1\). We know from Proposition 3-(a1) that \(|k(y)|<1\).

From (41) and the fact that \(R(k(y),y)=0\) by definition of \(k(y)\), we see that \(B(k(y),y)=0\) is equivalent to

$$\begin{aligned} 0=\lambda (1-k(y))y+\mu _2(y-k(y))=(\lambda (1-k(y))+\mu _2) y - \mu _2 k(y) \end{aligned}$$

that is,

$$\begin{aligned} \lambda (1-k(y)+\mu _2) y=\mu _2 k(y). \end{aligned}$$

Taking the absolute value in both sides of the above equation yields

$$\begin{aligned} |\lambda (1-k(y)+\mu _2)|= |\lambda (1-k(y)+\mu _2)y|=|\mu _2 k(y)|<\mu _2. \end{aligned}$$
(97)

But \(|\lambda (1-k(y))+\mu _2)|>\mu _2\) which contradicts (97). Hence, \(B(k(y),y)\not =0\) for \(|y|=1, y\not =1\).

Since \(k(1)=1\), we see that \(B(k(1),1)=B(1,1)=0\) from the definition of \(B(x,y)\). Let us show that the multiplicity of this zero is one. This amounts to showing that \(\text {d}B(k(y),y)/\text {d}y\) does not vanish at \(y=1\).

Differentiating \(B(k(y),y)\) w.r.t. \(y\) in (41) (Hint: \(R(k(y),y)=0\)) and setting \(y=1\), gives

$$\begin{aligned} \frac{\text {d}B(k(y),y)}{\text {d}y}|_{y=1}=\frac{\mu \mu _1}{\alpha } ((\lambda +\mu _2)k^{\prime }(1)-\mu _2). \end{aligned}$$
(98)

Let us calculate \(k^{\prime }(1)\), the derivative of \(k(y)\) at \(y=1\). To this end, let us use (37) to differentiate \(R(k(y),y)\) (which is equal to zero) w.r.t. \(y\), which gives

$$\begin{aligned} 0=\frac{\text {d} R(k(y),y)}{\text {d}y}|_{y=1}=(\mu \mu _1 -\alpha \lambda _1)k^{\prime }(1)+\mu \mu _2 -\alpha \lambda _2 \end{aligned}$$
(99)

so that \(k^{\prime }(1)=(\alpha \lambda _2-\mu \mu _2)/(\mu \mu _1 -\alpha \lambda _1)\) (note that \(\mu \mu _1 -\alpha \lambda _1\not =0\) from Convention (35), which shows that \(k'(1)\) is well defined). Plugging this value of \(k'(1)\) into (98) gives

$$\begin{aligned} \frac{\text {d}B(k(y),y)}{\text {d}y}|_{y=1}&= \frac{\mu \mu _1}{\alpha (\mu \mu _1-\alpha \lambda _1)}\, ((\alpha \lambda _2-\mu \mu _2)(\lambda +\mu _2)-\mu _2(\mu \mu _1 -\alpha \lambda _1))\\&= \frac{\mu \mu _1}{\alpha (\mu \mu _1 -\alpha \lambda _1)}\alpha (\lambda \lambda _2 +\lambda \mu _2 -\mu \mu _2)\\&= \frac{\mu \mu _1}{\mu \mu _1 -\alpha \lambda _1}\mu \mu _2\left( \frac{\lambda \lambda _2}{\mu \mu _2}+\frac{\lambda }{\mu } -1\right) <0 \end{aligned}$$

under the conditions in (34) (to establish the 2nd equality we have used the definitions of \(\alpha \) and \(\lambda \)). This proves that \(\text {d}B(k(y),y)/\text {d}y|_{y=1}\not =0\) and completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avrachenkov, K., Nain, P. & Yechiali, U. A retrial system with two input streams and two orbit queues. Queueing Syst 77, 1–31 (2014). https://doi.org/10.1007/s11134-013-9372-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-013-9372-8

Keywords

Mathematics Subject Classification (2000)

Navigation