Skip to main content
Log in

A dynamic programming approach for distributing quantum circuits by bipartite graphs

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

There are many challenges involved in building near-term large-scale quantum computers. Some of these challenges can be overcome by partitioning a quantum circuit into smaller parts and allowing each part to be executed on a smaller quantum unit. This approach is known as distributed quantum computation. In this study, a dynamic programming algorithm is proposed to minimize the number of communications in a distributed quantum circuit. This algorithm consists of two steps: first, the quantum circuit is converted into a bipartite graph model, and then a dynamic programming approach is proposed to partition the model into low-capacity quantum circuits. The proposed approach is evaluated on some benchmark quantum circuits, and a remarkable reduction in the number of required teleportations is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zomorodi-Moghadam, M., Houshmand, M., Houshmandi, M.: Optimizing teleportation cost in distributed quantum circuits. Theor. Phys. 57(3), 848–861 (2018)

    Article  MathSciNet  Google Scholar 

  2. Van Meter, R., Ladd, T.D., Fowler, A.G., Yamamoto, Y.: Distributed quantum computation architecture using semiconductor nanophotonics. Int. J. Quantum Inf. 8, 295–323 (2010)

    Article  Google Scholar 

  3. Krojanski, H.G., Suter, D.: Scaling of decoherence in wide NMR quantum registers. Phys. Rev. Lett. 93(9), 090501 (2004)

    Article  ADS  Google Scholar 

  4. Nickerson, N.H., Li, Y., Benjamin, S.C.: Topological quantum computing with a very noisy network and local error rates approaching one percent. Nat. Commun. 4, 1756 (2013)

    Article  ADS  Google Scholar 

  5. Cuomo, D., Caleffi, M., Cacciapuoti, A.S.: Towards a distributed quantum computing ecosystem. arXiv preprint arXiv:2002.11808 (2020)

  6. Andres-Martinez, P.: Automated distribution of quantum circuits. Theoret. Comput. Sci. 410(26), 2489–2510 (2018)

    Google Scholar 

  7. Van Meter, R., Oskin, M.: Architectural implications of quantum computing technologies. ACM J. Emerg. Technol. Comput. Syst. JETC 2, 2006 (2006)

    Google Scholar 

  8. Meter, V., Munro, W., Nemoto, K., Itoh, K.M.: Arithmetic on a distributed-memory quantum multicomputer. ACM J. Emerg. Technol. Comput. Syst. JETC 3, 2 (2008)

    Google Scholar 

  9. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  10. Whitney, M., Isailovic, N., Patel, Y., Kubiatowicz, J.: Automated generation of layout and control for quantum circuits. Phys. Rev. Lett. 85(26), 1330 (2000)

    Google Scholar 

  11. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, 10 anniversary edn. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  12. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299, 802–803 (1982)

    Article  ADS  Google Scholar 

  13. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv preprint arXiv:quant-ph/0001106 (2000)

  14. Zomorodi-Moghadam, M., Taherkhani, M.-A., Navi, K.: Synthesis and optimization by quantum circuit description language. In: Transactions on Computational Science XXIV, pp. 74–91. Springer (2014)

  15. Deutsch, D.E.: Quantum computational networks. Proc. R. Soc. Lond. A Math. Phys. Sci. 425(1868), 73–90 (1989)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Weinstein, Y.S., Buchbinder, S.D.: Steane code single qubit Clifford gates. J. Mod. Opt. 61(1), 49–52 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Zomorodi-Moghadam, M., Navi, K.: Rotation-based design and synthesis of quantum circuits. J. Circuits Syst. Comput. 25(12), 1650152 (2016)

    Article  Google Scholar 

  18. Pham, P., Svore, K.M.: A 2D nearest-neighbor quantum architecture for factoring in polylogarithmic depth. Quantum Inf. Comput. 13(11–12), 937–962 (2013)

    MathSciNet  Google Scholar 

  19. Grover, L.K.: Quantum telecomputation. arXiv preprint arXiv:quant-ph/9704012 (1997)

  20. Cleve, R., Buhrman, H.: Substituting quantum entanglement for communication. Phys. Rev. A 56, 1201 (1997)

    Article  ADS  Google Scholar 

  21. Cirac, J., Ekert, A., Huelga, S., Macchiavello, C.: Distributed quantum computation over noisy channels. Phys. Rev. A 59, 4249 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  22. Van Meter, R., Devitt, S.J.: The path to scalable distributed quantum computing. Computer 49(9), 31–42 (2016)

    Article  Google Scholar 

  23. Yepez, Jeffrey: Type-II quantum computers. Int. J. Mod. Phys. C 12(09), 1273–1284 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  24. Yimsiriwattana, A., Lomonaco, S.J., Jr.: Distributed quantum computing: a distributed Shor algorithm. arXiv preprint arXiv:quant-ph/0403146 (2004)

  25. Ying, M., Feng, Y.: An algebraic language for distributed quantum computing. IEEE Trans. Comput. 58(6), 728–743 (2009)

    Article  MathSciNet  Google Scholar 

  26. Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd, D., Stather, M.: Efficient distributed quantum computing. Proc. R. Soc. A Math. Phys. Eng. Sci. 469(2153), 20120686 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  Google Scholar 

  28. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: from communication to distributed computing. In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp. 1–4 (2018)

  29. Cacciapuoti, A.S., Caleffi, M., Tafuri, F., Cataliotti, F.S., Gherardini, S., Bianchi, G.: Quantum internet: networking challenges in distributed quantum computing. IEEE Netw. 34, 137–143 (2019)

    Article  Google Scholar 

  30. Neumann, N.M.P., van Houte, R., Attema, T.: Imperfect distributed quantum phase estimation. In: International Conference on Computational Science, pp. 605–615. Springer (2020)

  31. Andreev, K., Racke, H.: Balanced graph partitioning. Theory Comput. Syst. 39(6), 929–939 (2006)

    Article  MathSciNet  Google Scholar 

  32. Buluç, A., Meyerhenke, H., Safro, I., Sanders, P., Schulz, C.: Recent advances in graph partitioning. In: Algorithm Engineering, pp. 117–158. Springer (2016)

  33. Kernighan, B.W., Lin, S.: An efficient heuristic procedure for partitioning graphs. Bell Syst. Tech. J. 49(2), 291–307 (1970)

    Article  Google Scholar 

  34. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In: 19th Design Automation Conference, pp. 175–181. IEEE (1982)

  35. Hendrickson, B., Leland, R.W.: A multi-level algorithm for partitioning graphs. SC 95(28), 1–14 (1995)

    MATH  Google Scholar 

  36. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  Google Scholar 

  37. Karypis, G., Aggarwal, R., Kumar, V., Shekhar, S.: Multilevel hypergraph partitioning: applications in VLSI domain. IEEE Trans. Very Large Scale Integr. VLSI Syst. 7(1), 69–79 (1999)

    Article  Google Scholar 

  38. Zare, H., Shooshtari, P., Gupta, A., Brinkman, R.R.: Data reduction for spectral clustering to analyze high throughput flow cytometry data. BMC Bioinform. 11(1), 403 (2010)

    Article  Google Scholar 

  39. Arias-Castro, E., Chen, G., Lerman, G., et al.: Spectral clustering based on local linear approximations. Electron. J. Stat. 5, 1537–1587 (2011)

    Article  MathSciNet  Google Scholar 

  40. Thulasiraman, K., Swamy, M.N.S.: Graphs: theory and algorithms. John Wiley & Sons (2011)

  41. Childs, A.M., Cleve, R., Deotto, E., Farhi, E., Gutmann, S., Spielman, D.A.: Exponential algorithmic speedup by a quantum walk. STOC’03 Proc. Thirty-Fifth Annu. ACM Symp. Theory Comput. 410(26), 59–68 (2003)

    Article  MathSciNet  Google Scholar 

  42. Whitfield, J.D., Biamonte, J., Aspuru-Guzik, A.: Simulation of electronic structure Hamiltonians using quantum computers. Mol. Phys. 109(5), 735–750 (2011)

    Article  ADS  Google Scholar 

  43. Wille, R., Grobe, D., Teuber, L., Dueck, G.W., Drechsler, R.: Revlib: an online resource for reversible functions and reversible circuits. In: IEEE International Symposium on Multiple-Valued Logic, pp. 220–225 (2008)

  44. Houshmand, M., et al.: An evolutionary approach to optimizing teleportation cost in distributed quantum computation. Int. J. Theor. Phys. 59(4), 1315–1329 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariam Zomorodi-Moghadam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davarzani, Z., Zomorodi-Moghadam, M., Houshmand, M. et al. A dynamic programming approach for distributing quantum circuits by bipartite graphs. Quantum Inf Process 19, 360 (2020). https://doi.org/10.1007/s11128-020-02871-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02871-7

Keywords

Navigation