Skip to main content
Log in

Temperature-dependent remote control of polarization and coherence intensity with sender’s pure initial state

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study the remote creation of the polarization and intensity of the first-order coherence (or coherence intensity) in long spin-1/2 chains with one-qubit sender and receiver. Therewith we use a physically motivated initial condition with the pure state of the sender and the thermodynamical equilibrium state of the other nodes. The main part of the creatable region is a one-to-one map of the initial state (control) parameters, except the small subregion twice covered by the control parameters, which appears owing to the chosen initial state. The polarization and coherence intensity behave differently in the state creation process. In particular, the coherence intensity cannot reach any significant value unless the polarization is large in long chains (unlike the short ones), but the opposite is not true. The coherence intensity vanishes with an increase in the chain length, while the polarization (by absolute value) is not sensitive to this parameter. We represent several characteristics of the creatable polarization and coherence intensity and describe their relation to the parameters of the initial state. The link to the eigenvalue–eigenvector parametrization of the receiver’s state space is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  2. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Perfect state transfer in quantum spin networks. Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  3. Albanese, C., Christandl, M., Datta, N., Ekert, A.: Mirror inversion of quantum states in linear registers. Phys. Rev. Lett. 93, 230502 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  4. Karbach, P., Stolze, J.: Spin chains as perfect quantum state mirrors. Phys. Rev. A 72, 030301(R) (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gualdi, G., Kostak, V., Marzoli, I., Tombesi, P.: Perfect state transfer in long-range interacting spin chains. Phys. Rev. A 78, 022325 (2008)

    Article  ADS  Google Scholar 

  6. Wójcik, A., Luczak, T., Kurzyński, P., Grudka, A., Gdala, T., Bednarska, M.: Unmodulated spin chains as universal quantum wires. Phys. Rev. A 72, 034303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. De Chiara, G., Rossini, D., Montangero, S., Fazio, R.: From perfect to fractal transmission in spin chains. Phys. Rev. A 72, 012323 (2005)

    Article  ADS  Google Scholar 

  8. Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Robustness of spin-coupling distributions for perfect quantum state transfer. Phys. Rev. A 84, 022311 (2011)

    Article  ADS  Google Scholar 

  9. Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Spin chains for robust state transfer: modified boundary couplings versus completely engineered chains. Phys. Rev. A 85, 012318 (2012)

    Article  ADS  Google Scholar 

  10. Zwick, A., Álvarez, G.A., Stolze, J., Osenda, O.: Quantum state transfer in disordered spin chains: how much engineering is reasonable? Quant. Inf. Comput. 15, 582–600 (2015)

    MathSciNet  Google Scholar 

  11. Stolze, J., Álvarez, G.A., Osenda, O., Zwick, A.: Quantum state transfer and network engineering. In: Nikolopoulos, G.M., Jex, I. (eds.) Quantum Science and Technology, pp. 149–182. Springer, Berlin (2014)

    Google Scholar 

  12. Kuznetsova, E.I., Zenchuk, A.I.: High-probability quantum state transfer in an alternating open spin chain with an X Y Hamiltonian. Phys. Lett. A 372, 6134–6140 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Nikolopoulos, G.M., Jex, I. (eds.): Quantum State Transfer and Network Engineering. Series in Quantum Science and Technology. Springer, Berlin (2014)

    Google Scholar 

  14. Bayat, A., Karimipour, V.: Thermal effects on quantum communication through spin chains. Phys. Rev. A 71, 042330 (2005)

    Article  ADS  Google Scholar 

  15. Cappellaro, P.: Coherent-state transfer via highly mixed quantum spin chains. Phys. Rev. A 83, 032304 (2011)

    Article  ADS  Google Scholar 

  16. Qin, W., Wang, Ch., Long, G.L.: High-dimensional quantum state transfer through a quantum spin chain. Phys. Rev. A 87, 012339 (2013)

    Article  ADS  Google Scholar 

  17. Bayat, A.: Arbitrary perfect state transfer in d-level spin chains. Phys. Rev. A 89, 062302 (2014)

    Article  ADS  Google Scholar 

  18. Godsil, C., Kirkland, S., Severini, S., Smith, Ja: Number-theoretic nature of communication in quantum spin systems. Phys. Rev. Lett. 109, 050502 (2012)

    Article  ADS  Google Scholar 

  19. Sousa, R., Omar, Ya.: Pretty good state transfer of entangled states through quantum spin chains. New J. Phys. 16, 123003 (2014)

    Article  ADS  Google Scholar 

  20. Burgarth, D., Bose, S.: Conclusive and arbitrarily perfect quantum-state transfer using parallel spin-chain channels. Phys. Rev. A 71, 052315 (2005)

    Article  ADS  Google Scholar 

  21. Shizume, K., Jacobs, K., Burgarth, D., Bose, S.: Quantum communication via a continuously monitored dual spin chain. Phys. Rev. A 75, 062328 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Sandberg, M., Knill, E., Kapit, E., Vissers, M.R.: Pappas: efficient quantum state transfer in an engineered chain of quantum bits. Quant. Inf. Proc. 1–12 (2015). doi:10.1007/s11128-015-1152-4

  23. Lorenz, P., Stolze, J.: Transferring entangled states through spin chains by boundary-state multiplets. Phys. Rev. A 90, 044301 (2014)

    Article  ADS  Google Scholar 

  24. Banchi, L., Bayat, A., Verrucchi, P., Bose, S.: Nonperturbative entangling gates between distant qubits using uniform cold atom chains. Phys. Rev. Let. 106, 140501 (2011)

    Article  ADS  Google Scholar 

  25. Qin, W., Wang, Ch., Zhang, X.: Protected quantum-state transfer in decoherence-free subspaces. Phys. Rev. A 91, 042303 (2015)

    Article  ADS  Google Scholar 

  26. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

  27. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  28. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121–1125 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.-C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  30. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.-C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarizations for quantum communication. In: Meyers, R.E., Shih, Y. (eds.), Quantum Communications and Quantum Imaging III. Proceedings of SPIE 5893 589301 (SPIE, Bellingham, WA, 2005)

  31. Dakic, B., Lipp, Ya O., Ma, X., Ringbauer, M., Kropatschek, S., Barz, S., Paterek, T., Vedral, V., Zeilinger, A., Brukner, C., Walther, P.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012)

    Article  Google Scholar 

  32. Xiang, G.Y., Li, J., Yu, B., Guo, G.C.: Remote preparation of mixed states via noisy entanglement. Phys. Rev. A 72, 012315 (2005)

    Article  ADS  Google Scholar 

  33. Pouyandeh, S., Shahbazi, F., Bayat, A.: Measurement-induced dynamics for spin-chain quantum communication and its application for optical lattices. Phys. Rev. A 90, 012337 (2014)

    Article  ADS  Google Scholar 

  34. Yang, S., Bayat, A., Bose, S.: Entanglement-enhanced information transfer through strongly correlated systems and its application to optical lattices. Phys. Rev. A 84, 020302 (2011)

    Article  ADS  Google Scholar 

  35. Zenchuk, A.I.: Information propagation in a quantum system: examples of open spin-1/2 chains. J. Phys. A Math. Theor. 45, 115306 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Pouyandeh, S., Shahbazi, F.: Quantum state transfer in XXZ spin chains: a measurement induced transport method. Int. J. Quantum Inform. 13, 1550030 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Zenchuk, A.I.: Remote creation of a one-qubit mixed state through a short homogeneous spin-1/2 chain. Phys. Rev. A 90, 052302 (2014)

    Article  ADS  Google Scholar 

  38. Bochkin, G.A., Zenchuk, A.I.: Remote one-qubit-state control using the pure initial state of a two-qubit sender: selective-region and eigenvalue creation. Phys. Rev. A 91, 062326 (2015)

    Article  ADS  Google Scholar 

  39. Fel’dman, E.B., Brüschweiler, R., Ernst, R.R.: From regular to erratic quantum dynamics in long spin 1/2 chains with an XY Hamiltonian. Chem. Phys. Lett. 294, 297–304 (1998)

    Article  ADS  Google Scholar 

  40. Abragam, A.: The Principles of Nuclear Magnetism. Clarendon Press, Oxford (1961)

    Google Scholar 

  41. Baum, J., Munowitz, M., Garroway, A.N., Pines, A.: Multiple-quantum dynamics in solid state NMR. J. Chem. Phys. 83, 2015–2025 (1985)

    Article  ADS  Google Scholar 

  42. Oliveira, I.S., Bonagamba, T.J., Sarthour, R.S., Freitas, J.C.C., deAzevedo, E.R.: NMR Quantum Information Processing. Elsevier, Amsterdam (2007)

    MATH  Google Scholar 

  43. Fel’dman, E.B.: Multiple quantum NMR in one dimensional and nano-scale systems: theory and computer simulations. Appl. Magn. Res. 45, 797–806 (2014)

    Article  Google Scholar 

  44. Goldman, M.: Spin temperature and nuclear magnetic resonance in solids. Clarendon Press, Oxford (1970)

    Google Scholar 

  45. Jordan, P., Wigner, E.: Über das Paulische Äquivalenzverbot. Z. Phys. 47, 631–651 (1928)

    Article  ADS  MATH  Google Scholar 

  46. Cruz, H.B., Goncalves, L.L.: Time-dependent correlations of the one-dimensional isotropic XY model. J. Phys. C Solid State Phys. 14, 2785–2791 (1981)

    Article  ADS  Google Scholar 

  47. Abramowitz, M.A., Stegun, I.A.: Handbook of mathematical functions with formulas, graphs, and mathematical tables. National bureau of standards. Appl. Math. Ser. 55, 355–389 (1964)

  48. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002)

    Article  ADS  Google Scholar 

  49. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  50. Sazim, S., Chiranjeevi, V., Chakrabarty, I., Srinathan, K.: Retrieving and routing quantum information in a quantum network. Quant. Inf. Proc. 14, 4651–4664 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Russian Foundation for Basic Research, Grants Nos. 15-07-07928 and 16-03-00056, and by the Program of RAS “Element base of quantum computers” (Grant No. 0089-2015-0220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Zenchuk.

Appendices

Appendix 1: amplitude \(R_N(\tau )\) as a characteristics of transmission line

The nearest-neighbor Hamiltonian (4) can be diagonalized using the Jordan–Wigner transformation method [45, 46]:

$$\begin{aligned} H=\sum _{k} \varepsilon _k \beta _k^+\beta _k ,\;\; \varepsilon _k = \cos (k) ,\;\;\displaystyle k=\frac{\pi n}{N+1}, \;\;\;n=1,2,\dots ,N, \end{aligned}$$
(84)

where \(\beta _j\) are the fermion operators, introduced in terms of the other fermion operators \(c_j\) using the Fourier transformation

$$\begin{aligned} \beta _k = \sum _{j=1}^N g_k(j) c_j, \end{aligned}$$
(85)

where the fermion operators \(c_j\) read

$$\begin{aligned} c_j=(-2)^{j-1} I_{1z}I_{2z}\dots I_{(j-1)z} I^-_j. \end{aligned}$$
(86)

Here

$$\begin{aligned} g_k(j)=\left( \frac{2}{N+1} \right) ^{1/2} \sin (k j). \end{aligned}$$
(87)

The projection operators \(I_{jz}\) can be represented as

$$\begin{aligned} I_{jz} = c^+_j c_j -\frac{1}{2},\;\;\forall \; j. \end{aligned}$$
(88)

Before proceeding to the derivation of the density matrix evolution, we rewrite initial density matrix (2) in the following operator form

$$\begin{aligned} \rho _0= & {} \frac{1}{Z}\left( \frac{1}{2} E + \left( |a_0|^2-|a_1|^2\right) I_{z1} + a_0 a_1^* I^+_1 + a_1 a_0^* I^-_1\right) e^{-{b} I_{z1}} e^{{b} I_z}\nonumber \\= & {} \frac{1}{Z}\left( A_1 E + A_2I_{z1} + A_3 I^+_1 + A_4 I^-_1\right) e^{{b} I_z} , \end{aligned}$$
(89)

where E is the \(2\times 2\) unit operator,

$$\begin{aligned} Z= & {} \left( 2 \cosh \frac{{b}}{2}\right) ^{N-1},\;\;I_z =\sum _{i=1}^N I_{zi},\nonumber \\ A_1= & {} \frac{1}{2}e^{-\frac{{b}}{2}} +|a_1|^2 \sinh \frac{{b}}{2},\;\;\; A_2=e^{-\frac{{b}}{2}} -2 |a_1|^2 \cosh \frac{{b}}{2},\nonumber \\ A_3= & {} a_0 a_1^* e^{\frac{{b}}{2}},\;\;\;A_4=a_0^* a_1 e^{-\frac{{b}}{2}} . \end{aligned}$$
(90)

Since \([H,I_z]=0\), the evolution of the density matrix can be written as

$$\begin{aligned} \rho (\tau )=\frac{1}{Z}\sum _{i=1}^4 {r_i(\tau )} e^{{b} I_z}, \end{aligned}$$
(91)

with

$$\begin{aligned} r_1(\tau )= & {} A_1 ,\;\; \nonumber \\ r_2(\tau )= & {} A_2\left( -\frac{1}{2} + \sum _{k,k'=1}^N e^{-i \tau (\varepsilon _k-\varepsilon _{k'})} g_{1k}g_{1k'}\beta ^+_k\beta _{k'} \right) ,\nonumber \\ r_3(\tau )= & {} A_3\sum _{k=1}^N e^{-i \tau \varepsilon _k} g_{1k} \beta ^+_k,\;\;\; r_4(\tau )=A_4\sum _{k=1}^N e^{i \tau \varepsilon _k} g_{1k} \beta _k. \end{aligned}$$
(92)

Reducing this matrix with respect to all the nodes except for the Nth one and writing it in the basis \(|0\rangle , |N\rangle \), we obtain the state of the last node:

$$\begin{aligned} \rho _N(\tau )= \left( \begin{array}{cc}\displaystyle \frac{e^{\frac{{b}}{2}}}{2 \cosh \frac{{b}}{2}} + \frac{1}{2}\left( \frac{e^{-\frac{{b}}{2}}}{\cosh \frac{{b}}{2}}- 2|a_1|^2\right) |f_N(\tau )|^2 &{} \displaystyle \left( -\tanh \frac{{b}}{2}\right) ^{N-1} a_0 a_1^* f^*_N(\tau )\\ \displaystyle \left( -\tanh \frac{{b}}{2}\right) ^{N-1} a_0^* a_1 f_N(\tau ) &{}\displaystyle \frac{e^{-\frac{{b}}{2}}}{2 \cosh \frac{{b}}{2}} - \frac{1}{2}\left( \frac{e^{-\frac{{b}}{2}}}{\cosh \frac{{b}}{2}}- 2|a_1|^2\right) |f_N(\tau )|^2 \end{array} \right) ,\nonumber \\ \end{aligned}$$
(93)

where

$$\begin{aligned} f_N(\tau )= \sum _{k=1}^N e^{ i \varepsilon _k \tau } g_{1k} g_{Nk}. \end{aligned}$$
(94)

In our calculations, we use \(f_N\) as a global characteristic of the transmission line and represent it in the form

$$\begin{aligned} f_N(\tau )= R_N(\tau ) e^{2 i \pi \Phi _N(\tau )}, \end{aligned}$$
(95)

where \(R_N\) and \(\Phi _N\) are the amplitude and the phase of \(f_N\), respectively. Then, Eq. (93) reduces into Eq. (5). The maximal creatable region corresponds to the maximum of \(R_N(\tau )\). This maximum R(N) and the appropriate time instant \(\tau _{max}(N)\) are found as functions of the chain length N in Sect. 3.1, see Fig. 1.

Appendix 2: the asymptotic behavior of function \(R_N(\tau )\) as \(N\rightarrow \infty \)

Let us rewrite the function \(f_N(\tau )\) for odd N as (the case of even N can be treated similarly)

$$\begin{aligned} f_N(\tau )= & {} \frac{2}{N+1}\sum _k e^{i\epsilon _k \tau }\sin (kN) \sin (k)\nonumber \\= & {} \frac{2}{N+1}\sum _{n=1}^N \sin ^2 \left( \frac{\pi n}{N+1} \right) \cos \left[ \tau \cos \left( \frac{\pi n}{N+1}\right) \right] \end{aligned}$$
(96)

We can introduce the Bessel functions into Eq. (96) using the following well-known relation [47]:

$$\begin{aligned} \cos \left[ \tau \cos \left( \frac{\pi n}{N+1}\right) \right] =J_0(\tau )+2\sum _{m=1}^\infty (-1)^m J_{2m}(\tau ) \cos \left( \frac{2\pi mn}{N+1}\right) . \end{aligned}$$
(97)

Substituting Eq. (97) into (96), we obtain:

$$\begin{aligned} f_N(\tau )= & {} -\sum _{p=0}^\infty (-1)^{(2p+1)\frac{N+1}{2}} \left( 2 J_{(2p+1)(N+1)}(\tau ) \right. \nonumber \\&\left. +\; J_{(2p+1)(N+1)-2}(\tau ) + J_{(2p+1)(N+1)+2}(\tau )\right) . \end{aligned}$$
(98)

It can be simply verified using the numerical simulation that the behavior of \(f_N(\tau )\) over the time interval \(0<\tau \lesssim 2 N\) with \(N>2\) is governed by the first term in the above sum over p. In other words, we have for the amplitude of \(f_N\):

$$\begin{aligned} R^\mathrm{appr}_N(\tau )= & {} \Big | J_{N+3}(\tau ) +J_{N-1}(\tau ) +2 J_{N+1}(\tau )\Big |. \end{aligned}$$
(99)

Being derived for odd N, this formula holds for even N as well, giving the maximum R in formulas (14) and (15) with the accuracy increasing with N. Thus, \(|R(3)-R^\mathrm{appr}(3)| \sim 0.001\) and \(|R(5)-R^\mathrm{appr}(5)| \sim 10^{-5}\). Consequently, although formula (99), generally speaking, assumes large N, it is applicable to the short chains as well.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fel’dman, E.B., Kuznetsova, E.I. & Zenchuk, A.I. Temperature-dependent remote control of polarization and coherence intensity with sender’s pure initial state. Quantum Inf Process 15, 2521–2552 (2016). https://doi.org/10.1007/s11128-016-1271-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1271-6

Keywords

Navigation