Skip to main content

Advertisement

Log in

C-type cytochromes in the photosynthetic electron transfer pathways in green sulfur bacteria and heliobacteria

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

Bchl:

Bacteriochlorophyll

Cyt:

Cytochrome

ET:

Electron transfer

FAP:

Filamentous anoxygenic phototroph

P840:

Primary electron donor made of a special pair of bacteriochlorophylls a in the green sulfur bacterial RC

P800:

Primary electron donor made of a special pair of bacteriochlorophylls g in the heliobacterial RC

PS I:

Photosystem I

PS II:

Photosystem II

RC:

Reaction center

References

  • Albert I, Rutherford AW, Grav H, Kellermann J, Michel H (1998) The 18 kDa cytochrome c553 from Heliobacterium gestii: gene sequence and characterization of the mature protein. Biochemistry 37:9001–9008

    Article  CAS  PubMed  Google Scholar 

  • Albouy D, Sturgis JN, Feiler U, Nitschke W, Robert B (1997) Membrane-associated c-type cytochromes from the green sulfur bacterium Chlorobium limicola forma thiosulfatophilum: purification and characterization of cytochrome c 553. Biochemistry 36:1927–1932

    Article  CAS  PubMed  Google Scholar 

  • Ambler RP (1991) Sequence variability in bacterial cytochromes c. Biochim Biophys Acta 1058:42–47

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Furuta H, Sumi H (1994) “Two-step” mechanism in single-step isomerizations. Kinetics in highly viscous liquid phase. J Am Chem Soc 116:5545–5550

    Article  CAS  Google Scholar 

  • Azai C, Tsukatani Y, Harada J, Oh-oka H (2009) Sulfur oxidation in mutants of the photosynthetic green sulfur bacterium Chlorobium tepidum devoid of cytochrome c-554 and SoxB. Photosynth Res 100:57–65

    Article  CAS  PubMed  Google Scholar 

  • Bryant DA (1994) Gene nomenclature recommendations for green photosynthetic bacteria and heliobacteria. Photosynth Res 41:27–28

    Article  CAS  Google Scholar 

  • Cramer WA, Baniulis D, Yamashita E, Zhang H, Zatsman AI, Hendrich MP (2008) Cytochrome b 6 f complex, colon structure, spectroscopy, and function of heme c n: n-side electron and proton transfer reactions. In: Fromme P (ed) Photosynthetic protein complexes. Wiley-Blackwell, Weinheim, pp 155–179

    Chapter  Google Scholar 

  • Crofts A, Wraight CA (1983) The electrochemical domain of photosynthesis. Biochim Biophys Acta 726:149–185

    CAS  Google Scholar 

  • Daldal F, Deshmukh M, Prince RC (2003) Membrane-anchored cytochrome c as an electron carrier in photosynthesis and respiration: past, present and future of an unexpected discovery. Photosynth Res 76:127–134

    Article  CAS  PubMed  Google Scholar 

  • de Castro E, Sigrist CJ, Gattiker A, Bulliard V, Langendijk-Genevaux PS, Gasteiger E, Bairoch A, Hulo N (2006) ScanProsite: detection of PROSITE signature matches and ProRule-associated functional and structural residues in proteins. Nucleic Acids Res 34:W362–W365

    Article  PubMed  Google Scholar 

  • Dîaz-Quintana A, Hervâs M, Navarro JA, De la Rossa MA (2008) Plastocyanin and cytochrome c 6: the soluble electron carriers between the cytochrome b 6 f and photosystem I. In: Fromme P (ed) Photosynthetic protein complexes. Wiley-Blackwell, Weinheim, pp 181–200

    Chapter  Google Scholar 

  • Ducluzeau AL, Chenu E, Capowiez L, Baymann F (2008) The Rieske/cytochrome b complex of Heliobacteria. Biochim Biophys Acta 1777:1140–1146

    Article  CAS  PubMed  Google Scholar 

  • Feiler U, Nitschke W, Michel H (1992) Characterization of an improved reaction center preparation from the photosynthetic green sulfur bacterium Chlorobium containing the FeS centers FA and FB and a bound cytochrome subunit. Biochemistry 31:2608–2614

    Article  CAS  PubMed  Google Scholar 

  • Fowler CF, Nugent NA, Fuller RC (1971) The isolation and characterization of a photochemically active complex from Chloropseudomonas ethylica. Proc Natl Acad Sci USA 68:2278–2282

    Article  CAS  PubMed  Google Scholar 

  • Francke C, Permentier HP, Franken EM, Neerken S, Amesz J (1997) Isolation and properties of photochemically active reaction center complexes from the green sulfur bacterium Prosthecochloris aestuarii. Biochemistry 36:14167–14172

    Article  CAS  PubMed  Google Scholar 

  • Frigaard N-U, Bryant DA (2008) Genomic insights into the sulfur metabolism of phototrophic green sulfur bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms. Springer, Dordrecht, pp 337–355

    Chapter  Google Scholar 

  • Gibson J (1961) Cytochrome pigments from the green photosynthetic bacterium Chlorobium thiosulphatophilum. Biochem J 79:151–158

    CAS  PubMed  Google Scholar 

  • Gray KA, Daldal F (1995) Mutational studies of the cytochrome bc1 complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 747–774

    Google Scholar 

  • Hager-Braun C, Xie D-L, Jarosch U, Herold E, Büttner M, Zimmermann R, Deutzmann R, Hauska G, Nelson N (1995) Stable photobleaching of P840 in Chlorobium reaction center preparation: presence of the 42-kDa bacteriochlorophyll a protein and a 17-kDa polypeptide. Biochemistry 34:9617–9624

    Article  CAS  PubMed  Google Scholar 

  • Hauska G, Schoedl T, Remigy H, Tsiotis G (2001) The reaction center of green sulfur bacteria. Biochim Biophys Acta 1507:260–277

    Article  CAS  PubMed  Google Scholar 

  • Hervás M, De la Rosa MA, Tollin G (1992) A comparative laser-flash absorption spectroscopy study of algal plastocyanin and cytochrome c 552 photooxidation by photosystem I particles from spinach. Eur J Biochem 203:115–120

    Article  PubMed  Google Scholar 

  • Hervás M, Navarro JA, Díaz A, Bottin H, De la Rosa MA (1995) Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c 6 to photosytem I. Experimental evidence on the evolution of the reaction mechanism. Biochemistry 34:11321–11326

    Article  PubMed  Google Scholar 

  • Higuchi M, Hirano Y, Kimura Y, Oh-oka H, Miki K, Wang Z-Y (2009) Overexpression, characterization and crystallization of the functional domain of cytochrome c z from Chlorobium tepidum. Photosynth Res 102:74–84

    Article  Google Scholar 

  • Hope AB (2000) Electron transfers amongst cytochrome f, plastocyanin and photosystem I: kinetics and mechanisms. Biochim Biophys Acta 1456:5–26

    Article  CAS  PubMed  Google Scholar 

  • Hurt EC, Hauska G (1984) Purification of membrane-bound cytochromes and a photoactive P840 protein complex of the green sulfur bacterium Chlorobium limicola f. thiosulfatophilum. FEBS Lett 168:149–154

    Article  CAS  Google Scholar 

  • Imhoff JF (1995) Taxonomy and physiology of phototrophic purple bacteria and green sulfur bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 1–15

    Google Scholar 

  • Imhoff JF (2003) Phylogenetic taxonomy of the family Chlorobiaceae on the basis of 16S rRNA and fmo (Fenna–Matthews–Olson protein) gene sequences. Int J Syst Evol Microbiol 53:941–951

    Article  CAS  PubMed  Google Scholar 

  • Itoh S (1979) Surface potential and reaction of membrane-bound electron transfer components. I. Reaction of P-700 in sonicated chloroplasts with redox reagents. Biochim Biophys Acta 548:579–595

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Seo D, Sakurai H, Setif P (2002) Kinetics of electron transfer between soluble cytochrome c-554 and purified reaction center complex from the green sulfur bacterium Chlorobium tepidum. Photosynth Res 71:125–135

    Article  CAS  PubMed  Google Scholar 

  • Jenney FE, Daldal F (1993) A novel membrane-bound c-type cytochrome, cyt c y can mediate the photosynthetic growth of Rhodobacter capsulatus and Rhodobacter sphaeroides. EMBO J 12:1283–1292

    CAS  PubMed  Google Scholar 

  • Jenney FE, Prince RC, Daldal F (1994) Roles of the soluble cytochrome c 2 and membrane-associated cytochrome c y of Rhodobacter capsulatus in photosynthetic electron transfer. Biochemistry 33:2496–2502

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni RD, Golden SS (1994) Adaptation to high light intensity in Synechococcus sp. strain PCC: regulation of three psbA genes and two forms of the D1 protein. J Bacteriol 176:959–965

    CAS  PubMed  Google Scholar 

  • Kusai A, Yamanaka T (1973a) Cytochrome c553, Chlorobium thiosulfatophilum, is a sulphide-cytochrome c reductase. FEBS Lett 34:235–237

    Article  CAS  PubMed  Google Scholar 

  • Kusai K, Yamanaka T (1973b) The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulphatophilum: roles of cytochrome c-551 and cytochrome c-553. Biochim Biophys Acta 325:304–314

    Article  CAS  PubMed  Google Scholar 

  • Kusumoto N, Inoue K, Nasu H, Sakurai H (1994) Preparation of a photoactive reaction center complex containing photoreducible Fe-S centers and photooxidizable cytochrome c from the green sulfur bacterium Chlorobium tepidum. Plant Cell Physiol 35:17–25

    CAS  Google Scholar 

  • Kusumoto N, Sétif P, Brettel K, Seo D, Sakurai H (1999) Electron transfer kinetics in purified reaction centers from the green sulfur bacterium Chlorobium tepidum studied by multiple-flash excitation. Biochemistry 38:12124–12137

    Article  CAS  PubMed  Google Scholar 

  • Madigan MT, Ormerod JG (1995) Taxonomy, physiology and ecology of heliobacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 17–30

    Google Scholar 

  • Meyer TE, Cusanovich MA (2003) Discovery and characterization of electron transfer proteins in the photosynthetic bacteria. Photosynth Res 76:111–126

    Article  CAS  PubMed  Google Scholar 

  • Meyer TE, Donohue TJ (1995) Cytochromes, iron-sulfur, and copper proteins mediating electron transfer from cyt bc 1 complex to photosynthetic reaction center complexes. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 725–745

    Google Scholar 

  • Meyer TE, Bartsch RG, Cusanovich MA, Mathewson JH (1968) The cytochromes of Chlorobium thiosulfatophilum. Biochim Biophys Acta 153:854–861

    Article  CAS  PubMed  Google Scholar 

  • Miller M, Liu X, Snyder SW, Thurnauer MC, Biggins J (1992) Photosynthetic electron-transfer reactions in the green sulfur bacterium Chlorobium vibrioforme: evidence for the functional involvement of iron-sulfur redox centers on the acceptor side of the reaction center. Biochemistry 31:4354–4363

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto R, Iwaki M, Mino H, Harada J, Itoh S, Oh-Oka H (2006) ESR signal of the iron-sulfur center FX and its function in the homodimeric reaction center of Heliobacterium modesticaldum. Biochemistry 45:6306–6316

    Article  CAS  PubMed  Google Scholar 

  • Morand LZ, Cheng RH, Krogman DW, Ho KK (1994) Soluble electron transfer catalysts of cyanobacteria. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 381–407

    Google Scholar 

  • Murakami A, Fujita Y (1991) Regulation of photosystem stoichiometry in the photosynthetic system of the cyanophyte Synechocystis PCC 6714 in response to light-intensity. Plant Cell Physiol 32:223–230

    CAS  Google Scholar 

  • Myllykallio H, Drepper F, Mathis P, Daldal F (1998) Membrane-anchored cytochrome c y mediated microsecond time range electron transfer from the cytochrome bc1 complex to the reaction center in Rhodobacter capsulatus. Biochemistry 37:5501–5510

    Article  CAS  PubMed  Google Scholar 

  • Ogawa T, Furusawa T, Nomura R, Seo D, Hosoya-Matsuda N, Sakurai H, Inoue K (2008) SoxAX binding protein, a novel component of the thiosulfate-oxidizing multienzyme system in the green sulfur bacterium Chlorobium tepidum. J Bacteriol 190:6097–6110

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H (2007) Type 1 reaction center of photosynthetic heliobacteria. Photochem Photobiol 83:177–186

    Google Scholar 

  • Oh-oka H, Blankenship RE (2004) Green bacteria: secondary electron donor (cytochromes). In: Lennarz WJ, Lane MD (eds) Encyclopedia of biological chemistry. Academic Press, Oxford, pp 521–524

    Google Scholar 

  • Oh-oka H, Kakutani S, Matsubara H, Malkin R, Itoh S (1993) Isolation of the photoactive reaction center complex that contains three types of Fe-S centers and a cytochrome c subunit from the green sulfur bacterium Chlolobium limicola f. thiosulfatophilum, strain Larsen. Plant Cell Physiol 34:93–101

    CAS  Google Scholar 

  • Oh-oka H, Kamei S, Matsubara H, Iwaki M, Itoh S (1995) Two molecules of cytochrome c function as the electron donors to P840 in the reaction center complex isolated from a green sulfur bacterium, Chlorobium tepidum. FEBS Lett 365:30–34

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (1997) Viscosity dependence of the electron transfer rate from bound cytochrome c to P840 in the photosynthetic reaction center of the green sulfur bacterium Chlorobium tepidum. Biochemistry 36:9267–9272

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (1998) Membrane-bound cytochrome c z couples quinol oxidoreductase to the P840 reaction center complex in isolated membranes of the green sulfur bacterium Chlorobium tepidum. Biochemistry 37:12293–12300

    Article  CAS  PubMed  Google Scholar 

  • Oh-oka H, Iwaki M, Itoh S (2002) Electron donation from membrane-bound cytochrome c to the photosynthetic reaction center in whole cells and isolated membranes of Heliobacterium gestii. Photosynth Res 71:137–147

    Article  CAS  PubMed  Google Scholar 

  • Okamura MY, Feher G (1995) Proton-coupled electron transfer reactions of QB in reaction centers from photosynthetic bacteria. In: Blankenship RE, Madigan MT, Bauer CE (eds) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, Dordrecht, pp 577–594

    Google Scholar 

  • Okkels JS, Kjær B, Hansson Ö, Svendsen I, Møller BL, Scheller HV (1992) A membrane-bound monoheme cytochrome c 551 of a novel type is the immediate electron donor to P840 of the Chlorobium vibrioforme photosynthetic reaction center complex. J Biol Chem 267:21139–21145

    CAS  PubMed  Google Scholar 

  • Okumura N, Shimada K, Matsuura K (1994) Photo-oxidation of membrane-bound and soluble cytochrome c in the green sulfur bacterium Chlorobium tepidum. Photosynth Res 41:125–134

    Article  CAS  Google Scholar 

  • Ort DR, Yocum CF (1996) Electron transfer and energy transduction in photosynthesis: an overview. In: Ort DR, Yocum CF (eds) Oxygenic phosotosynthesis: the light reactions. Kluwer Academic Publishers, Dordrecht, pp 1–9

    Google Scholar 

  • Ortega JM, Mathis P (1993) Electron transfer from the tetraheme cytochrome to the special pair in isolated reaction centers of Rhodopseudomonas viridis. Biochemistry 32:1141–1151

    Article  CAS  PubMed  Google Scholar 

  • Ortega JM, Drepper F, Mathis P (1999) Electron transfer between cytochrome c 2 and the tetraheme cytochrome c in Rhodopseudomonas viridis. Photosynth Res 59:147–157

    Article  CAS  Google Scholar 

  • Prince RC, Olson JM (1976) Some thermodynamic and kinetic properties of the primary photochemical reactants in a complex from a green photosynthetic bacterium. Biochim Biophys Acta 423:357–362

    Article  CAS  PubMed  Google Scholar 

  • Schütz M, Zirngibl S, le Coutre J, Büttner M, Xie D-L, Nelson N, Deutzmann R, Hauska G (1994) A transcription unit for the Rieske FeS-protein and cytochrome b in Chlorobium limicola. Photosynth Res 39:163–174

    Article  Google Scholar 

  • Selvaraj F, Devine D, Zhou W, Brune DC, Lince MT, Blankenship RE (1998) Purification and properties of cytochrome c-553 from the green sulfur bacterium Clorobium tepidum. In: Garab G (ed) Photosynthesis: mechanism and effects. Kluwer Academic Publishers, Dordrecht, pp 1593–1596

    Google Scholar 

  • Sumi H (1991) Theory on reaction rates in nonthermalized steady states during conformational fluctuations in viscous solvents. J Phys Chem 95:3334–3350

    Article  CAS  Google Scholar 

  • Swarthoff T, van der Veek-Horsley KM, Amesz J (1981) The primary charge separation, cytochrome oxidation and triplet formation in preparations from the green photosynthetic bacterium Prosthecochloris aestuarii. Biochim Biophys Acta 635:1–12

    Article  CAS  PubMed  Google Scholar 

  • Sybesma C, Beugeling T (1967) Light-induced absorbance changes in the green photosynthetic bacterium Chloropseudomonas ethylicum. Biochim Biophys Acta 131:357–361

    Article  CAS  PubMed  Google Scholar 

  • Takahashi H, Iwai M, Takahashi Y, Minagawa J (2006) Identification of the mobile light-harvesting complex II polypeptides for state transitions in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 103:477–482

    Article  CAS  PubMed  Google Scholar 

  • Tamura N, Itoh S, Nishimura M (1983) Effects of net and local charges on the interaction between chemically-modified horse heart cytochrome c and P700 in photosystem 1-enriched subchloroplast particles. Plant Cell Physiol 24:215–223

    CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

  • Tsukatani Y, Miyamoto R, Itoh S, Oh-oka H (2006) Soluble cytochrome c-554, CycA, is not essential for photosynthetic electron transfer in Chlorobium tepidum. FEBS Lett 580:2191–2194

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Azai C, Kondo T, Itoh S, Oh-Oka H (2008) Parallel electron donation pathways to cytochrome c(z) in the type I homodimeric photosynthetic reaction center complex of Chlorobium tepidum. Biochim Biophys Acta 1777:1211–1217

    Article  CAS  PubMed  Google Scholar 

  • Tsukatani Y, Nakayama N, Shimada K, Mino H, Itoh S, Matsuura K, Hanada S, Nagashima KV (2009) Characterization of a blue-copper protein, auracyanin, of the filamentous anoxygenic phototrophic bacterium Roseiflexus castenholzii. Arch Biochem Biophys 490:57–62

    Google Scholar 

  • Venturoli G, Mallardi A, Mathis P (1993) Electron transfer from cytochrome c2 to the primary donor of Rhodobacter sphaeroides reaction centers. A temperature dependence study. Biochemistry 32:13245–13253

    Article  CAS  PubMed  Google Scholar 

  • Xiong J, Inoue K, Bauer CE (1998) Tracking molecular evolution of photosynthesis by characterization of a major photosynthesis gene cluster from Heliobacillus mobilis. Proc Natl Acad Sci USA 95:14851–14856

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka T (1972) Evolution of cytochrome C molecule. Adv Biophys 3:227–276

    CAS  PubMed  Google Scholar 

  • Yamanaka T, Okunuki K (1968) Comparison of Chlorobium thiosulphatophilum cytochrome c-555 with c-type cytochromes derived from algae and nonsulphur purple bacteria. J Biochem 63:341–346

    CAS  PubMed  Google Scholar 

  • Yanyushin MF, del Rosario MC, Brune DC, Blankenship RE (2005) New class of bacterial membrane oxidoreductases. Biochemistry 44:10037–10045

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was financially supported by Grants-in-Aid for Scientific Research (C) (No. 21570168) (to H.O.) from the Ministry of Education, Culture, Sports, Science, and Technology of Japan and by postdoctoral fellowships from the Japan Society for the Promotion of Science (No. 211578 to C.A, No. 181481 to Y.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hirozo Oh-oka.

Additional information

In this review, the old species names of green sulfur bacteria were transcribed to new ones according to Imhoff’s definition (Imhoff 2003).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Azai, C., Tsukatani, Y., Itoh, S. et al. C-type cytochromes in the photosynthetic electron transfer pathways in green sulfur bacteria and heliobacteria. Photosynth Res 104, 189–199 (2010). https://doi.org/10.1007/s11120-009-9521-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9521-4

Keywords

Navigation