Skip to main content
Log in

Photosynthetic oscillation in individual cells of the marine diatom Coscinodiscus wailesii (Bacillariophyceae) revealed by microsensor measurements

  • Research Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Oscillations with a period of 1–2 min in the rate of photosynthesis have been found in leaves of C3 and C4 land plants under invariant, saturating, light and carbon dioxide. This article reports the occurrence of similar oscillations with a period of 2–2.5 min in individual cells of the marine diatom Coscinodiscus wailesii. These oscillations were determined by measurements of both oxygen (oxygen microelectrode) and carbon dioxide (pH microelectrode) just outside the plasmalemma. These oscillations were found in less than 1% of the cells examined. The occurrence of oscillations in unicelluar diatoms rules out for these organisms hypotheses as to the origin of oscillations in land plant leaves that are based on cell–cell interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

CA:

Carbonic anhydrase

CCM:

Carbon concentrating mechanism

CO2 :

Carbon dioxide

CO3 2- :

Carbonate anion

HCO3 :

Bicarbonate

O2 :

Oxygen

References

  • Andrianov VK, Kurella GA, Litvin FF (1965) Changes of resting potential of alga Nitella cells and the connection of this effect with photosynthesis. Biophysics 10:588–591

    Google Scholar 

  • Anning K, Nimer CA, Merrett MJ, Brownlee C (1996) Costs and benefits of calcification in coccolithophorids. J Mar Sys 9:45–56

    Article  Google Scholar 

  • Brehm-Stecher BF, Johnson EA (2004) Single-cell microbiology:tools, technologies, and applications. Microbiol Mol Biol Rev 68:538–559

    Article  PubMed  CAS  Google Scholar 

  • Boyd CM, Gradmann D (1999) Electrophysiology of the diatom Coscinodiscus wailesii. I. Endogenous changes of membrane voltage and resistance. J exp Bot 50:445–452

    Article  CAS  Google Scholar 

  • Burkhardt S, Riebesell U, Zondervan I (1999) Effects of growth rate, CO2 concentration, and cell size on the stable carbon isotope fractionation in marine phytoplankton. Geochimica et Cosmochimica Acta 63:3729–3741

    Article  CAS  Google Scholar 

  • Burns BD, Beardall J (1987) Utilization of inorganic carbon by marine microalgae. J Exp Mar Biol Ecol 107:75–86

    Article  CAS  Google Scholar 

  • Chen CY, Durbin ED (1994) Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar Ecol Prog Ser 109:83–94

    Article  Google Scholar 

  • Colman B, Rotatore C (1995) Photosynthetic inorganic carbon uptake and accumulation in two marine diatoms. Plant, Cell Environ 18:919–924

    Article  CAS  Google Scholar 

  • de Beer D, Glud A, Epping E, Kühl M (1997) A fast responding CO2 microelectrode for profiling in sediments, microbial mats and biofilms. Limnol Oceanogr 42:1590–1600

    Article  Google Scholar 

  • Eisensamer B, Roennenberg T (2004) Extracellular pH is under circadian control in Gonyaulax polyedra and forms a metabolic feedback loop. Chronobiol Int 21:27–41

    Article  PubMed  CAS  Google Scholar 

  • Endo R, Omasa K (2004) Chlorophyll fluorescence imaging of individual algal cells:effect of herbicide on Spirogyra distentata at different growth stages. Environ Sci Technol 38:4165–4168

    Article  PubMed  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton, NJ, USA

    Google Scholar 

  • Ferimazova N, Küpper H, Nedbal L, Trtilek M (2002) New insights into photosynthetic oscillations revealed by two-dimensional microscopic measurements of chlorophyll fluorescence kinetics in intact leaves and isolated protoplasts. Photochem photobiol 76:501–508

    Article  PubMed  CAS  Google Scholar 

  • Goldman JC (1999) Inorganic carbon availability and the growth of large marine diatoms. Mar Ecol Prog Ser 180:81–91

    Article  CAS  Google Scholar 

  • Guillard RRL, Ryther JH (1962) Studies of marine planktonic diatoms. Can J Microbiol 8:229–239

    PubMed  CAS  Google Scholar 

  • Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28:279–288

    Article  Google Scholar 

  • Hansen U-P, Gradmann D (1971) The action of sinusoidally modulated light on the membrane potential of Acetabularia. Plant Cell Physiol 12:335–348

    Google Scholar 

  • Hansen U-P, Kolbowski J, Dau H (1987) Relationship between photosynthesis and plasmalemma transport. J exp Bot 38:1965–1981

    Article  CAS  Google Scholar 

  • Kesseler H (1967) Untersuchungen über die chemische Zusammensetzung des Zellsaftes der Diatomee Coscinodiscus wailesii (Bacillariophyceae, Centrales). Helgoländer wiss Meeresunters 16:262–270

    Article  Google Scholar 

  • Köhler-Rink S, Kühl M (2000) Microsensor studies of photosynthesis and respiration in larger symbiotic foraminifera. I The physico–chemical microenvironment of Marginopora vertebratis, Amphistegina lobifera and Amphisorus hemperichii. Mar Biol 137:473–486

    Article  Google Scholar 

  • Korb RE, Saville PJ, Johnston AM, Raven JA (1997) Sources of inorganic carbon for photosynthesis by three species of marine diatom. J Phycol 33:433–440

    Article  CAS  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Kühn SF, Brownlee C (2005) Membrane organisation and dynamics in the marine diatom Coscinodiscus wailesii (Bacillariophyceae). Bot Mar 48:297–305

    Article  Google Scholar 

  • Kühn SF, Köhler-Rink S (submitted) pH effect on the susceptibility to parasitoid infection in the marine diatom Coscinodiscus spp. (Bacillariophyceae). Mar Biol

  • Laisk A, Siebke K, Gerst U, Eichelmann H, Oja V, Heber U (1991) Oscillations in photosynthesis are initiated and supported by imbalances in the supply of ATP and NADPH to the Calvin cycle. Planta 185:75–86

    Article  Google Scholar 

  • Nimer NA, Iglesias-Rodriguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. J Phycol 33:625–631

    Article  CAS  Google Scholar 

  • Oxborough K, Hanlon ARM, Underwood GJC, Baker NR (2000) In vivo estimation of the photosystem II photochemical efficiency of individual microphytobenthic cells using high-resolution imaging of chlorophyll a fluorescence. Limnol Oceanogr 45:1520–1525

    Article  Google Scholar 

  • Ploug H, Stolte W, Epping EHG, Jørgensen BB (1999) Diffusive boundary layers, photosynthesis, and respiration of the colony-forming plankton algae, Phaeocystis sp. Limnol Oceanogr 44:1949–1958

    Article  Google Scholar 

  • Raghavendra AS, Gerst U, Heber U (1995) Oscillations in photosynthetic carbon assimilation and chlorophyll fluorescence are different in Amaranthus caudatus, a C4 plant, and Spinacia oleracea, a C3 plant. Planta 195:471–477

    Article  CAS  Google Scholar 

  • Raven JA (1993) Limits on growth rate. Nature 361:209–210

    Article  Google Scholar 

  • Raven JA (1997) Inorganic carbon acquisition by marine autotrophs. Adv Bot Res 27:85–209

    CAS  Google Scholar 

  • Raven JA, Smith FA (1980) Intracellular pH regulation in the giant-celled marine alga Chaetomorpha darwinii. J exp Bot 31:1357–1371

    Article  Google Scholar 

  • Revsbech NP (1989) An oxygen microelectrode with a guard cathode. Limnol Oceanogr 34:474–478

    Article  CAS  Google Scholar 

  • Roberts K, Granum E, Leegood RC, Raven JA (2007a) Carbon acquisition by diatoms. Photosynth Res, DOI 10.1007.s11120-007-9172-2

  • Roberts K, Granum E, Leegood RC, Raven JA (2007b) C3 and C4 pathways of photosynthetic carbon assimilation in marine diatoms are under genetic, not environmental control. Plant Physiol 145. doi: 10.1104/pp107.10261

  • Rovers W, Giersch C (1995) Photosynthetic oscillations and the interdependence of photophosphorylation and electron transport as studied by a mathematical model. BioSystems 35:63–73

    Article  PubMed  CAS  Google Scholar 

  • Roussel MR (1998) Slowly reverting enzyme inactivation: a mechanism for generating long-lived damped oscillations. J theor Biol 195:233–244

    Article  PubMed  CAS  Google Scholar 

  • Ryde-Pettersson U (1992) Oscillations in the photosynthetic Calvin cycle: examination of a mathematical model. Acta Chim Scand 46:406–408

    Article  CAS  Google Scholar 

  • Setlikova E, Setlik I, Kupper H, Kasilicky V, Prasil O (2005) The photosynthesis of individual algal cells during the cell cycle of Scenedesmus quadricauda studied by chlorophyll fluorescence kinetic microscopy. Photosynth Res 84:113–120

    Article  PubMed  CAS  Google Scholar 

  • Siebke K, Weis E (1995) Imaging of chlorophyll-a-fluorescence in leaves: topography of photosynthetic oscillations in leaves of Glechoma hederacea. Photosynth Res 45:225–237

    Article  CAS  Google Scholar 

  • Siebke K, Yin Z-H, Raghavendra AS, Heber U (1992) Vacuolar pH oscillations in mesophyll cells accompany oscillations of photosynthesis in leaves: interdependence of cellular compartments, and regulation of electron flow in photosynthesis. Planta 186:526–531

    Article  CAS  Google Scholar 

  • Sivak MN (1987) Oscillations and other symptoms of limitation of in vivo photosynthesis by inadequate phosphate supply to the chloroplast. Plant Physiol Biochem 25:635–648

    CAS  Google Scholar 

  • Smith FA, Raven JA (1979) Intracellular pH and its regulation. Ann Rev Plant Physiol 30:289–311

    Article  CAS  Google Scholar 

  • Stitt M, Grosse H (1988) Interactions between sucrose synthesis and CO2 fixation I. Secondary kinetics during photosynthesis induction are related to a delayed activation of sucrose synthesis. J Plant Physiol 133:129–137

    CAS  Google Scholar 

  • Stitt M, Grosse H, Woo K-C (1988) Interactions between sucrose synthesis and CO2 fixation II. Alterations of fructose 2,6-bisphosphate during photosynthetic oscillations. J Plant Physiol 133:138–143

    CAS  Google Scholar 

  • Taraldsvik M, Myklestad SM (2000) The effect of pH on growth rate, biochemical composition and extracellular production of the marine diatom Skeletonema costatum. Eur J Phycol 35:189–194

    Article  Google Scholar 

  • Underwood GJC, Perkins RG, Consalvey MC, Hanlon ARM, Oxborough K, Baker NR, Paterson DM (2005) Patterns in microphytobenthic primary productivity: species-specific variation in migratory rhythms and photosynthetic efficiency in mixed-species biofilms. Limnol Oceanogr 50:755–767

    Article  Google Scholar 

  • Vanselow KH, Kolbowski J, Hansen U-P (1989) Further evidence for the relationship between light-induced-changes of plasmalemma transport and transthylakoid proton uptake. J exp Bot 40:239–245

    Article  CAS  Google Scholar 

  • Villareal TA (2004) Single-cell pulse amplitude modulation fluorescence measurements of the giant diatom Ethmodiscus (Bacillariophyceae). J Phycol 40:1052–1061

    Article  Google Scholar 

  • Vredenberg WF (1969) Light-induced changes in membrane potential connected with photosynthetic electron transport. Biochem Biophys Res Comm 37:785–792

    Article  PubMed  CAS  Google Scholar 

  • Wolf-Gladrow DA, Riebesell U, Burkhardt S, Bijma J (1999) Direct effect of CO2 concentration on growth and isotopic composition of marine plankton. Tellus—Chem Phys Meteorol 51B:461–476

    CAS  Google Scholar 

Download references

Acknowledgements

SK is very grateful to Stephanie Köhler-Rink (Max Planck Institute for Marine Microbiology, Bremen) who not only shared her knowledge on microsensors but also her workplace in the laboratory. JAR acknowledges support from NERC for work on algal photosynthesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefanie F. Kühn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kühn, S.F., Raven, J.A. Photosynthetic oscillation in individual cells of the marine diatom Coscinodiscus wailesii (Bacillariophyceae) revealed by microsensor measurements. Photosynth Res 95, 37–44 (2008). https://doi.org/10.1007/s11120-007-9221-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9221-x

Keywords

Navigation