Skip to main content
Log in

Assessing Methods for Developing Phosphorus Desorption Isotherms from Soils using Anion Exchange Membranes

  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Developing desorption isotherms for inorganic phosphorus (P) is a time-consuming and non-standardized procedure. Anion exchange membranes (AEMs) have been successfully used in studies of P desorption kinetics and total membrane-desorbable P, but rarely have they been used for developing P desorption isotherms. Our study had two objectives: (1) to evaluate the suitability of using multiple strips of AEMs (termed the Multiple AEM Method) to develop P desorption isotherms; and (2) to compare the Multiple AEM Method with a sequential-extraction approach using AEMs (termed the Sequential AEM Method) to determine if the manner in which AEMs were used would influence the slope of the desorption isotherm, i.e. the partition coefficient. Both methods yielded well-defined, but numerically different desorption isotherms for all levels of sorbed P. However, estimated K d values among methods were equivalent in the low and medium levels of P sorbed. The Multiple AEM method was quicker than the Sequential AEM method, but both gave similar K d values in an agriculturally significant range of soil solution concentrations. These methods should be tested on a range of soil type to determine their suitability in developing P desorption isotherms and to move toward method standardization for desorption isotherms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AEM:

anion exchange membrane

References

  • B W Bache C Ireland (1980) ArticleTitleDesorption of phosphate from soils using anion exchange resins J. Soil Sci. 31 297–306 Occurrence Handle1:CAS:528:DyaL3cXltFartLg%3D Occurrence Handle10.1111/j.1365-2389.1980.tb02082.x

    Article  CAS  Google Scholar 

  • S A Barber (1980) Soil–plant interactions in the phosphorus nutrition of plants F E. Khasawneh (Eds) The Role of Phosphorus in Agriculture ASA Madison, WI 591–615

    Google Scholar 

  • S A Barber (1984) Soil Nutrient Bioavailability, A Mechanistic Approach A Wiley–Interscience Publication New York, NY

    Google Scholar 

  • N F Barros Filho N B Comerford N F Barros (2005) ArticleTitlePhosphorus sorption, desorption and resorption by soils of the Brazilian Cerrado supporting eucalypt Biomass Bioenergy 28 229–236 Occurrence Handle10.1016/j.biombioe.2004.08.005 Occurrence Handle1:CAS:528:DC%2BD2cXhtVejtLvI

    Article  CAS  Google Scholar 

  • Barros Filho N F, Comerford N B, Barros N F and Santana R C 2001 Dessorção de fósforo do solo por meio de resina aniônica em membrana. (In Portuguese) Anais do XXVIII Congresso Brasileiro de Ciência do Solo. Londrina, Jul 16–22, 2001. Soc. Brasileira de Ci. do Solo, Viçosa, MG, Brasil.

  • N J Barrow (1979) ArticleTitleThe desorption of phosphate from soil J. Soil Sci. 30 259–270 Occurrence Handle1:CAS:528:DyaE1MXlt1alu74%3D Occurrence Handle10.1111/j.1365-2389.1979.tb00983.x

    Article  CAS  Google Scholar 

  • N J Barrow T C Shaw (1975) ArticleTitleThe slow reactions between soil and anions. 5. Effects of period of prior contact on the desorption of phosphate from soils Soil Sci. 119 311–320 Occurrence Handle1:CAS:528:DyaE2MXhsFCgtrw%3D Occurrence Handle10.1097/00010694-197504000-00009

    Article  CAS  Google Scholar 

  • N J Barrow T C Shaw (1979) ArticleTitleEffects of soil:solution ratio and vigour of shaking on rate of phosphate adsorbed by soil J. Soil Sci. 30 67–76 Occurrence Handle1:CAS:528:DyaE1MXksFGhur0%3D Occurrence Handle10.1111/j.1365-2389.1979.tb00965.x

    Article  CAS  Google Scholar 

  • J S Bhatti N B Comerford (2002) ArticleTitleMeasurement of phosphorus desorption from a spodic horizon using two different desorption methods and pH control Commun. Soil Sci. Plant Anal. 33 845–853 Occurrence Handle1:CAS:528:DC%2BD38XjvV2gtbs%3D Occurrence Handle10.1081/CSS-120003070

    Article  CAS  Google Scholar 

  • R H Bray L T Kurtz (1945) ArticleTitleDetermination of total, organic, and available forms of phosphorus in soils Soil Sci. 59 39–45 Occurrence Handle1:CAS:528:DyaH2MXht1GjtA%3D%3D

    CAS  Google Scholar 

  • J M Bremner (1996) Nitrogen-total D L Sparks (Eds) Methods of Soil Analysis, Part 3. Chemical Methods. SSSA Book Series no.5 SSSA-ASA Madison, WI 1085–1121

    Google Scholar 

  • J L Brewster A N Gancheva P H Nye (1975) ArticleTitleThe determination of desorption isotherms for soil phosphate using low volumes of solution and an anion exchange resin J. Soil Sci. 26 364–377 Occurrence Handle1:CAS:528:DyaE28Xhs1egtbo%3D Occurrence Handle10.1111/j.1365-2389.1975.tb01961.x

    Article  CAS  Google Scholar 

  • L R Cooperband P M Gale N B Comerford (1999) ArticleTitleRefinement of the anion exchange membrane method for soluble phosphorus measurement Soil Sci. Soc. Am. J. 63 58–64 Occurrence Handle1:CAS:528:DyaK1MXitFGgsLY%3D Occurrence Handle10.2136/sssaj1999.03615995006300010010x

    Article  CAS  Google Scholar 

  • L R Cooperband T J Logan (1994) ArticleTitleMeasuring in situ changes in labile soil phosphorus with anion-exchange membranes Soil Sci. Soc. Am. J. 58 105–114 Occurrence Handle1:CAS:528:DyaK2cXitFGqsbg%3D Occurrence Handle10.2136/sssaj1994.03615995005800010015x

    Article  CAS  Google Scholar 

  • A Delgado J Torrent (1997) ArticleTitlePhosphate-rich soils in the European Union: Estimating total plant-available phosphorus Eur. J. Agron. 6 205–214 Occurrence Handle10.1016/S1161-0301(96)02048-5

    Article  Google Scholar 

  • R L Fox E J Kamprath (1970) ArticleTitlePhosphate sorption isotherms for evaluating the phosphate requirements of soils Soil Sci. Soc. Am. Proc. 34 902–907 Occurrence Handle1:CAS:528:DyaE3MXht1ansA%3D%3D Occurrence Handle10.2136/sssaj1970.03615995003400060025x

    Article  CAS  Google Scholar 

  • G W Gee J W Bauder (1986) Particle-size analysis A Klute (Eds) Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods. Agronomy Monograph No.9 ASA-SSSA Madison, WI 383–411

    Google Scholar 

  • R F Grant J A Robertson (1997) ArticleTitlePhosphorus uptake by root systems: mathematical modelling in ecosys Plant Soil 188 279–297 Occurrence Handle1:CAS:528:DyaK2sXktVSns7w%3D Occurrence Handle10.1023/A:1004280303150

    Article  CAS  Google Scholar 

  • Z L He X Yang K N Yuan Z X Zhu (1994) ArticleTitleDesorption and plant-availability of phosphate sorbed by some important minerals Plant Soil 162 89–97 Occurrence Handle1:CAS:528:DyaK2cXlslyksrc%3D Occurrence Handle10.1007/BF01416093

    Article  CAS  Google Scholar 

  • K R Helyar D N Munns R G Burau (1976) ArticleTitleAdsorption of phosphate by gibbisite. 1. Effects of neutral chloride salts of calcium, magnesium, sodium, and potassium J. Soil Sci. 27 307–314 Occurrence Handle1:CAS:528:DyaE2sXktFWq Occurrence Handle10.1111/j.1365-2389.1976.tb02001.x

    Article  CAS  Google Scholar 

  • F J Hingston A M Posner J P Quirk (1974) ArticleTitleAnion adsorption by goethite and gibbsite. II. Desorption of anions from hydrous oxide surfaces J. Soil Sci. 25 16–26 Occurrence Handle1:CAS:528:DyaE2cXhtlajtrs%3D Occurrence Handle10.1111/j.1365-2389.1974.tb01098.x

    Article  CAS  Google Scholar 

  • P J A Kleinman A N Sharpley K Gartley W M Jarrell S Kuo R G Menon R Myers K R Reddy E O Skogley (2001) ArticleTitleInterlaboratory comparison of soil phosphorus extracted by various soil test methods Commun. Soil Sci. Plant Anal. 32 2325–2345 Occurrence Handle1:CAS:528:DC%2BD3MXnvF2guro%3D Occurrence Handle10.1081/CSS-120000376

    Article  CAS  Google Scholar 

  • G F Koopmans W J Chardon P Willigen Particlede W H Riemsdijk Particlevan (2004) ArticleTitlePhosphorus desorption dynamics in soil and the link to a dynamic concept of bioavailability J. Environ. Qual. 33 1393–1402 Occurrence Handle15254122 Occurrence Handle1:CAS:528:DC%2BD2cXmtFKht7w%3D Occurrence Handle10.2134/jeq2004.1393

    Article  PubMed  CAS  Google Scholar 

  • V Kumar R J Gilkes M D A Bolland (1992) ArticleTitleA comparison of 7 soil-P tests for plant-species with different external-P requirements grown on soils containing rock phosphate and superphosphate residues Fert. Res. 33 35–45 Occurrence Handle1:CAS:528:DyaK3sXitlaru7g%3D Occurrence Handle10.1007/BF01058008

    Article  CAS  Google Scholar 

  • S Kuo (1996) Phosphorus D L. Sparks (Eds) Methods of Soil Analysis, Part 3. Chemical Methods. SSSA Book Series no.5 SSSA-ASA Madison, WI 869–919

    Google Scholar 

  • N Macariola-See H J Woodard T Schumacher (2003) ArticleTitleField verification of the Barber-Cushman mechanistic phosphorus uptake model for maize J. Plant Nutr. 26 139–158 Occurrence Handle1:CAS:528:DC%2BD3sXhtF2mt70%3D Occurrence Handle10.1081/PLN-120016501

    Article  CAS  Google Scholar 

  • L Madrid A M Posner (1979) ArticleTitleDesorption of phosphate from goethite J. Soil Sci. 30 697–707 Occurrence Handle1:CAS:528:DyaL3cXhsVGlsrc%3D Occurrence Handle10.1111/j.1365-2389.1979.tb01019.x

    Article  CAS  Google Scholar 

  • A Mehlich (1953) Determination of P, Ca, Mg, K, Na, and NH4. North Carolina Soil Test Div. Mimeo N.C. Dept. Agr Raleigh, NC

    Google Scholar 

  • A Mehlich (1984) ArticleTitleMehlich 3 soil test extractant: a modification of Mehlich 2 extractant Commun. Soil Sci. Plant Anal. 15 1409–1416 Occurrence Handle1:CAS:528:DyaL2MXhvVChsro%3D

    CAS  Google Scholar 

  • V F Melo B Singh C E G R Schaefer R F Novais M P F Fontes (2001) ArticleTitleChemical and mineralogical properties of kaolinite-rich Brazilian soils Soil Sci. Soc. Am. J. 65 1324–1333 Occurrence Handle1:CAS:528:DC%2BD3MXntFCjsr4%3D Occurrence Handle10.2136/sssaj2001.6541324x

    Article  CAS  Google Scholar 

  • L P C Morellato C F B Haddad (2000) ArticleTitleIntroduction: The Brazilian Atlantic Forest Biotropica 32 786–792

    Google Scholar 

  • J Murphy J P Riley (1962) ArticleTitleA modified single solution method for the determination of phosphate in natural waters Anal. Chim. Acta 27 31–36 Occurrence Handle1:CAS:528:DyaF38XksVyntr8%3D Occurrence Handle10.1016/S0003-2670(00)88444-5

    Article  CAS  Google Scholar 

  • D W Nelson L E Sommers (1996) Total carbon, organic carbon, and organic matter D L Sparks (Eds) Methods of Soil Analysis, Part 3. Chemical Methods. SSSA Book Series no.5 SSSA-ASA Madison, WI 961–1010

    Google Scholar 

  • N J Nuernberg J E Leal M E Sumner (1998) ArticleTitleEvaluation of an anion-exchange membrane for extracting plant available phosphorus in soils Commun. Soil Sci. Plant Anal. 29 467–479 Occurrence Handle1:CAS:528:DyaK1cXisVWhsrg%3D

    CAS  Google Scholar 

  • P H Nye P B Tinker (1977) Solute Movement in the Soil–Root System Univ. California Press Berkeley, CA

    Google Scholar 

  • H Okajima H Kubota T Sakuma (1983) ArticleTitleHysteresis in the phosphorus sorption and desorption process of soils Soil Sci. Plant Nutr. 29 271–283 Occurrence Handle1:CAS:528:DyaL3sXmtFWmtbc%3D

    CAS  Google Scholar 

  • J B Oliveira P K T Hacomine M N Camargo (1992) Classes gerais de solos do Brasil (In Portuguese) 2nd edn FUNEP Jaboticabal, Brazil

    Google Scholar 

  • Olsen S R, Cole C V, Watanabe F S and Dean L A 1954 Estimation of available phosphorus in soils by extraction with sodium bicarbonate. U.S. Dept. Agr. Circ. 939.

  • R L Parfitt K R Tate R B McKercher (1994) ArticleTitleMeasurement of phosphorus mineralization using an anion-exchange membrane Commun. Soil Sci. Plant Anal. 25 3209–3219 Occurrence Handle1:CAS:528:DyaK2MXisVWmsbg%3D

    CAS  Google Scholar 

  • K P Raven L R Hossner (1993) ArticleTitlePhosphorus desorption quantity–intensity relationships in soil Soil Sci. Soc. Am. J. 57 1501–1508 Occurrence Handle1:CAS:528:DyaK2cXhs1amtLc%3D Occurrence Handle10.2136/sssaj1993.03615995005700060018x

    Article  CAS  Google Scholar 

  • K P Raven L R Hossner (1994) ArticleTitleSoil phosphorus desorption kinetics and its relationship with plant growth Soil Sci. Soc. Am. J. 58 416–423 Occurrence Handle10.2136/sssaj1994.03615995005800020026x

    Article  Google Scholar 

  • S Saggar M J Hedley R E White (1990) ArticleTitleA simplified resin membrane technique for extracting phosphorus from soils Fert. Res. 24 173–180 Occurrence Handle1:CAS:528:DyaK3MXhtVSgs7o%3D Occurrence Handle10.1007/BF01073586

    Article  CAS  Google Scholar 

  • InstitutionalAuthorNameSAS Institute (1988) SAS/STAT User’s Guide Release 6.03 edn SAS Institute Inc Cary, NC

    Google Scholar 

  • W M H Saunders (1965) ArticleTitlePhosphate retention by New Zealand soils and relationships to free sesquioxides, organic matter and other soil properties N.Z.J. Agric. Res. 8 30–57 Occurrence Handle1:CAS:528:DyaF2MXpsVaqsw%3D%3D

    CAS  Google Scholar 

  • J J Schoenau W Z Huang (1991) ArticleTitleAnion-exchange membrane, water, and sodium bicarbonate extractions as soil tests for phosphorus Commun. Soil Sci. Plant. Anal. 22 465–492 Occurrence Handle1:CAS:528:DyaK3MXkvFWitrs%3D Occurrence Handle10.1080/00103629109368432

    Article  CAS  Google Scholar 

  • A N Sharpley L R Ahuja M Yamamoto R G Menzel (1981) ArticleTitleThe kinetics of phosphorus desorption from soil Soil Sci. Soc. Am. J. 45 493–496 Occurrence Handle1:CAS:528:DyaL3MXksl2jtrs%3D Occurrence Handle10.2136/sssaj1981.03615995004500030010x

    Article  CAS  Google Scholar 

  • E Sibbesen (1978) ArticleTitleAn investigation of the anion-exchange resin method for soil phosphate extraction Plant Soil 50 305–321 Occurrence Handle1:CAS:528:DyaE1cXlslylsb8%3D Occurrence Handle10.1007/BF02107180

    Article  CAS  Google Scholar 

  • P J Smethurst (2000) ArticleTitleSoil solution and other soil analyses as indicators of nutrient supply: a review For. Ecol. Manage. 138 397–411 Occurrence Handle10.1016/S0378-1127(00)00426-6

    Article  Google Scholar 

  • P J Smethurst N B Comerford (1993) ArticleTitlePotassium and phosphorus uptake by competing pine and grass: observation and model verification Soil Sci. Soc. Am. J. 57 1602–1610 Occurrence Handle10.2136/sssaj1993.03615995005700060034x

    Article  Google Scholar 

  • InstitutionalAuthorNameSoil Survey Staff (1999) Soil Taxonomy US Government Printing Office Washington, DC

    Google Scholar 

  • M E Sumner W P Miller (1996) Cation exchange capacity and exchange coefficients D L. Sparks (Eds) Methods of Soil Analysis, Part 3. Chemical Methods. SSSA Book Series No.5 SSSA-ASA Madison, WI 1201–1229

    Google Scholar 

  • K C J Rees ParticleVan N B Comerford W W McFee (1990a) ArticleTitleModeling potassium uptake by slash pine seedlings from low-potassium-supplying soils Soil Sci. Soc. Am. J. 54 1413–1421 Occurrence Handle10.2136/sssaj1990.03615995005400050034x

    Article  Google Scholar 

  • K C J Rees ParticleVan N B Comerford P S C Rao (1990b) ArticleTitleDefining soil buffer power: implications for ion diffusion and nutrient uptake modeling Soil Sci. Soc. Am. J. 54 1505–1507 Occurrence Handle10.2136/sssaj1990.03615995005400050050x

    Article  Google Scholar 

  • J E Yang E O Skogley (1992) ArticleTitleDiffusion kinetics of multinutrient accumulation by mixed-bed ion-exchange resin Soil Sci. Soc. Am. J. 56 408–414 Occurrence Handle1:CAS:528:DyaK38XksVOgsbc%3D Occurrence Handle10.2136/sssaj1992.03615995005600020011x

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, S., Comerford, N.B. Assessing Methods for Developing Phosphorus Desorption Isotherms from Soils using Anion Exchange Membranes. Plant Soil 279, 107–117 (2006). https://doi.org/10.1007/s11104-005-0437-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-005-0437-2

Key words:

Navigation