Skip to main content
Log in

A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

MYB transcription factors are a large family of proteins involved in the regulation of secondary metabolism and cell shape, the enhancement of disease resistance and the response to different stresses. In this study, the role of TaMYB4 in wheat against biotic and abiotic stresses was investigated. TaMYB4 was cloned from wheat cv. Suwan11 [the leaves were infected with Puccinia striiformis f.sp. tritici (Pst)]; the TaMYB4 protein is 243 amino acids in length. In addition, TaMYB4 exhibited high similarity with BdMYB4 from Brachypodium distachyon, which was also identified as a member of the R2R3-MYB family of genes. Furthermore, transient expression analysis showed that the deduced TaMYB4 protein was localised in the nucleus of onion epidermal cells. Additionally, a yeast one-hybrid assay revealed that TaMYB4 exhibits transcriptional activity and the C-terminus is necessary for the activation of transcription. The transcript levels of TaMYB4 were observed directly and were found to be significantly upregulated in the early stage and 48 h after inoculation with the incompatible Pst. The transcripts of TaMYB4 were detected in the wheat roots, culms and leaves. Moreover, the transcription of TaMYB4 was induced by salicylic acid, ethylene, abscisic acid and methyl jasmonate hormones. The same results were obtained with cold and wound treatments. Furthermore, the knockdown of TaMYB4 expression using virus-induced gene silencing enhanced the susceptibility of wheat cultivar Suwon11 to the incompatible race of Pst. These results demonstrate that TaMYB4 plays a role in the wheat response to biotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Agarwal M, Hao Y, Kapoor A, Dong CH, Fujii H, Zheng X, Zhu JK (2006) A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance. J Biol Chem 281:37636–37645

    Article  CAS  PubMed  Google Scholar 

  • Alison MM, Ross WW, Christian D, Malcolm CM (2009) Post-translational modification of an R2R3-MYB transcription factor by a MAP Kinase during xylem development. New Phytol 183:1001–1013

    Article  Google Scholar 

  • Baohong Z, Zhenhua J, Shuangmei T, Xiaomeng W, Zhenhua G, Beibei L, Hansong D (2012) AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signaling pathway in Arabidopsis. Funct Plant Biolo 40:304–313

    Google Scholar 

  • Bari R, Jones JDG (2009) Role of plant hormones in plant defence responses. Plant Mol Biol 69:473–488

    Article  CAS  PubMed  Google Scholar 

  • Birkenmeier GF, Ryan CA (1998) Wound signaling in tomato plants. Plant Physiol 117:687–693

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Buchanan CD, Lim S, Salzman RA, Kagiampakis I, Morishige DT, Weers BD, Klein RR, Pratt LH, Cordonnier-Pratt MM, Klein PE, Mullet JE (2005) Sorghum bicolor’s transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 58:699–720

    Article  CAS  PubMed  Google Scholar 

  • Burch-Smith TM, Anderson JC, Martin GB, Dinesh-Kumar SP (2004) Applications and advantages of virus-induced gene silencing for gene function studies in plants. Plant J 39:734–746

    Article  CAS  PubMed  Google Scholar 

  • De Paepe A, Vuylsteke M, Van Hummelen P, Zabeau M, Van Der Straeten D (2004) Transcriptional profiling by cDNA-AFLP and microarray analysis reveals novel insights into the early response to ethylene in Arabidopsis. Plant J 39:537–559

    Article  PubMed  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Du H, Zhang L, Liu L, Tang XF, Yang WJ, Wu YM, Huang YB, Tang YX (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry 74:1–11

    CAS  PubMed  Google Scholar 

  • Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15:573–581

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between Abiotic and biotic stress responses: a current view from the points of convergence in the stress signaling networks. Curr Opin Plant Biol 9:436–442

    Article  PubMed  Google Scholar 

  • Germán S, Barcellos A, Chaves M, Kohli M, Campos P, Viedma L (2007) The situation of common wheat rusts in the Southern Cone of America and perspectives for control. Austr J Agric Res 58:620–630

    Article  Google Scholar 

  • Gomaa AM, Raldugina GN, Burmistrova NA, Radionov NV, Kuznwtsov VI (2012) Response of transgenic rape plants bearing the Osmyb4 gene from rice encoding a trans-factor to low above-zero temperature. J Plant Phys 59:105–114

    CAS  Google Scholar 

  • Hein I, Barciszewska M, Hrubikova K, Williamson S, Dinesen M, Soenderby IE, Sundar S, Jarmolowski A, Shirasu K, Lacomme C (2005) Virus-induced gene silencing based functional characterization of genes associated with powdery mildew resistance in barley. Plant Physiol 38:2155–2164

    Article  Google Scholar 

  • Holzberg S, Brosio P, Gross C, Pogue GP (2002) Barley stripe mosaic virus-induced gene silencing in a monocot plant. Plant J 30:315–327

    Article  CAS  PubMed  Google Scholar 

  • Iriti M, Faoro F (2004) Plant defense and human nutrition: phenylpropanoids on the menu. Curr Top Nutraceutical Res 2:47–65

    CAS  Google Scholar 

  • Ito M (2005) Conservation and diversification of three-repeat Myb transcription factors in plants. J Plant Res 118:61–69

    Article  CAS  PubMed  Google Scholar 

  • Jensen MK, Hagedorn PH, Torres-zabala MD, Grant MR, Rung JH, Collinge DB, Lyngkjaer MF (2008) Transcriptional regulation by an NAC (NAM–ATAF1, 2–CUC2) transcription factor attenuates ABA signalling for efficient basal defence towards Blumeria graminis f. sp. hordei in Arabidopsis. Plant J 56:867–880

    Article  CAS  PubMed  Google Scholar 

  • Kang ZS, Li ZQ (1984) Discovery of a normal T. type new pathogenic strain to lovrin10. Acta Cllegii Septentrionali Occidentali Agric 4:18–28 (In Chinese)

    Google Scholar 

  • Katiyar A, Smita S, Lenka SK, Rajwanshi R, Chinnusamy V, Bansal KC (2012) Genome-wide classification and expression analysis of MYB transcription factor families in rice and Arabidopsis. BMC Genomics 13:544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirik V, Lee MM, Wester K, Herrmann U, Zheng Z, Oppenheimer D, Schiefelbein J, Hulskamp M (2005) Functional diversification of MYB23 and GL1 genes in trichome morphogenesis and initiation. Development 132:1477–1485

    Article  CAS  PubMed  Google Scholar 

  • Laura M, Consonni R, Locatelli F, Fumagalli E, Allavena A, Coraggio I, Mattana M (2010) Metabolic response to cold and freezing of Osteospermum ecklonis overexpressing Osmyb4. Plant Physiol Biochem 48:764–771

    Article  CAS  PubMed  Google Scholar 

  • Lepiniec L, Debeaujon I, Routaboul J, Baudry A, Pourcel L, Nesi N, Caboche M (2006) Genetics and biochemistry of seed flavonoids. Annu Rev Plant Biol 57:405–430

    Article  CAS  PubMed  Google Scholar 

  • Li L, Yu XF, Thompson MG, Yoshida S, Asami T, Chory J, Yin YH (2009a) Arabidopsis MYB30 is a direst target of BES1 and cooperates with BED1 to regulate brassinosteroid-induced gene expression. Plant J 58:275–286

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li SF, Milliken ON, Pham H, Seyit R, Napoli R, Preston J, Koltunow AM, Parish RW (2009b) The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis. Plant Cell 21:72–89

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu HM, Liu TG, Xu SC, Liu DQ, Chen WQ (2006) Inheritance of yellow rust resistance in an elite wheat germplasm Xingzi 9104. Acta Agron Ainica 32:1742–1745 (In Chinese)

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Meth 25:402–408

    Article  CAS  Google Scholar 

  • Mattana M, Biazzi E, Consonni R, Locatelli F, Vannini C, Provera S, Coraggio I (2005) Overexpression of Osmyb4 enhances compatible solute accumulation and increases stress tolerance of Arabidopsis thaliana. Physiolo Plantarum 125:212–223

    Article  CAS  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • McNeal FH, Konzak CF, Smith EP, Tate WS, Russell TS (1971) A uniform system for recording and processing cereal research data. US Dept Agric Agric Res Serv ARS 34–121:42 pp

  • Melotto M, Underwood W, Koczan J, Nomura K, He SH (2006) Plant stomata function in innate immunity against bacterial invasion. Cell 126:969–980

    Article  CAS  PubMed  Google Scholar 

  • Park RF, Bariana HS, Wellings CR (2007) Preface to ‘Global Landscapes in Cereal Rust Control’. Aust J Agric Res 58:46

    Google Scholar 

  • Patzlaff A, McInnis S, Courtenay A, Surman C, Newman LJ, Smith C, Bevan MB, Mansfield S, Whetten RW, Sederoff RR, Campbell MM (2003) Characterization of a pine MYB that regulates lignifications. Plant J 36:743–754

    Article  CAS  PubMed  Google Scholar 

  • Paz-Ares J, Ghosal D, Wienand U, Peterson PA, Saedler H (1987) The regulatory c1 locus of Zea mays encodes a protein with homology to myb proto-oncogene products and with structural similarities to transcriptional activators. EMBO J 6:3553–3558

    CAS  PubMed  Google Scholar 

  • Petty IT, French R, Jones RW, Jackson AO (1990) Identification of barley stripe mosaic virus genes involved in viral RNA replication and systemic movement. EMBO J 9:3453–3457

    CAS  PubMed  Google Scholar 

  • Raffaele S, Rivas S, Roby D (2006) An essential role for salicylic acid in AtMYB30-mediated control of the hypersensitive cell death program in Arabidopsis. FEBS Lett 580:3498–3504

    Article  CAS  PubMed  Google Scholar 

  • Raffaele S, Vailleau F, Leger A, Joubes J, Mierch O, Huard C, Blee E, Mongrand S, Domergue F, Roby B (2008) A MYB transcription factor regulates very long chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2001) A new member of the Arabidopsis WRKY transcription factor family, AtWRKY6 is associated with both senescence- and defence-related processes. Plant J 28:123–133

    Article  CAS  PubMed  Google Scholar 

  • Robatzek S, Somssich IE (2002) Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes Dev 16:1139–1149

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene silencing system for hexapliod wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Segarra G, Van SDE, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96

    Article  CAS  PubMed  Google Scholar 

  • Shi H, Cui R, Hu B, Wang X, Zhang S, Liu R, Dong H (2011) Overexpression of transcription factor AtMYB44 facilitates Botrytis infection in Arabidopsis. Phys Mol Plant Path 76:90–95

    Article  CAS  Google Scholar 

  • Singh KB, Foley RC, Onate-Sanchez L (2002) Transcription factors in plant defense and stress responses. Curr Opin Plant Biol 5:430–436

    Article  CAS  PubMed  Google Scholar 

  • Soltész A, Vágújfalvi A, Rizza F, Kerepesi I, Galiba G, Cattivelli L, Coraggio I, Cristina C (2012) The rice Osmyb4 gene enhances tolerance to frost and improves germination under unfavourable conditions in transgenic barley plants. J App Gen 53:133–143

    Article  Google Scholar 

  • Stakman EC (1915) Relation between Puccinia graminis and plants highly resistant to its attack. J Agric Res 4:193–201

    Google Scholar 

  • Stracke R, Werber M, Weisshaar B (2001) The R2R3-MYB gene family in Arabidopsis thaliana. Curr Opin Plant Biol 4:447–456

    Article  CAS  PubMed  Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Vailleau F, Daniel X, Tronchet M, Montillet JL, Triantaphylides C (2002) A R2R3-MYB gene, AtMYB30, acts as appositive regulator of the hypersensitive cell death program in plants in response to pathogen attack. PNAS 99:10179–10184

    Article  CAS  PubMed  Google Scholar 

  • Van Loon L (1997) Induced resistance in plants and the role of pathogenesis-related proteins. Eur J Plant Pathol 103:753–765

    Article  Google Scholar 

  • Van loon L, Van Strien E (1999) The families of pathogenesis related proteins, their activities, and comparative analysis of PR1 type proteins. Physiol Mol Plant Pathol 55:85–97

    Article  CAS  Google Scholar 

  • Van SDE, Verhagen BW, Doorn RV, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Loon LC, Ton J, Pieterse CM (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146:1293–1304

    Article  Google Scholar 

  • Vannini C, Iriti M, Bracale M, Locatelli F, Faoro F, Croce P, Pirona R, Di Maro A, Coraggio I, Genga A (2006) The ectopic expression of the rice Osmyb4 gene in Arabidopsis increases tolerance to abiotic, environmental and biotic stresses. Physiol Mol Plant Path 69:26–42

    Article  CAS  Google Scholar 

  • Vannini C, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, Bracale M (2007) Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4 gene. Plant Sci 173:231–239

    Article  CAS  Google Scholar 

  • Wang C, Huang L, Buchenauer H, Han Q, Zhang H, Kang Z (2007) Histochemical studies on the accumulation of reactive oxygen species (O2 and H2O2) in the incompatible and compatible interaction of wheat Puccinia striiformis f. sp. tritici. Physiol Mol Plant Pathol 31:230–239

    Article  Google Scholar 

  • Xia N, Zhang G, Liu XY, Deng L, Cai GL, Zhang Y, Wang XJ, Zhao J, Huang LL, Kang ZS (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stress. Mol Biol Rep 37:3703–3712

    Article  CAS  PubMed  Google Scholar 

  • Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q (2006) The MYB transcription factor super family of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biolo 60:107–124

    Article  Google Scholar 

  • Zhang LC, Zhao GY, Xia C, Jia JZ, Liu X, Kang XY (2012a) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873–5885

    Article  CAS  PubMed  Google Scholar 

  • Zhang LC, Zhao GY, Jia JZ, Kong XY (2012b) Molecular characterization of 60 isolated wheat MYB genes and analysis of their expression during abiotic stress. J Exp Bot 63:203–214

    Article  PubMed  Google Scholar 

  • Zhong R, Ye ZH (2007) Regulation of cell wall biosynthesis. Curr Opin Plant Biol 10:564–572

    Article  CAS  PubMed  Google Scholar 

  • Zhong RQ, Lee CH, Zhou JL, McCarthy RL, Ye ZH (2008) A battery of transcription factors involved in the regulation of secondary cell wall biosynthesis in Arabidopsis. Plant cell 20:2763–2782

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou H, Li S, Deng Z, Wang X, Chen T, Zhang J, Chen S, Ling H, Zhang A, Wang D (2007) Molecular analysis of three new receptor-like kinase genes from hexaploid wheat and evidence for their participation in the wheat hypersensitive response to stripe rust fungus infection. Plant J 52:420–434

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Basic Research Program of China (No. 2013CB127700), the National High Technology Research and Development Program of China (863 Program, 2012AA101503), the Key grant Project of Chinese Ministry of Education (313048), the National Natural Science Foundation of China (No. 30930064 and 31271990), and the 111 Project from the Ministry of Education of China (B07049).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojie Wang or Zhensheng Kang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1983 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Al-Attala, M.N., Wang, X., Abou-Attia, M.A. et al. A novel TaMYB4 transcription factor involved in the defence response against Puccinia striiformis f. sp. tritici and abiotic stresses. Plant Mol Biol 84, 589–603 (2014). https://doi.org/10.1007/s11103-013-0156-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0156-7

Keywords

Navigation