Skip to main content

Advertisement

Log in

Hyperprolactinemia and bone

  • Published:
Pituitary Aims and scope Submit manuscript

Abstract

Prolactin (PRL) has direct and indirect effects on bone metabolism. Experimental studies showed that in the presence of high PRL levels bone resorption was increased as well as bone formation was suppressed. Increased PRL levels in humans caused a reduction in sex hormone levels which turn may have detrimental effects on bone. Patients with hyperprolactinemia did have often decreased bone mineral density as well as an increased risk of fractures. Since PRL control may be relevant to bone health it is a clinical open issue the inclusion of skeletal health in future guidelines as indication to proactive screening, prevention and treatment particularly in high risk patients such as hyperprolactinemic women after menopause and patients with drug induced hyperprolactinemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernard V, Jacques YJ, Chanson P, Binart N (2015) New insights in prolactin: pathological implications. Nat Rev Endocrinol 11:265–275

    CAS  PubMed  Google Scholar 

  2. Melmed S, Casanueva FF, Hoffman AR, Kleinberg DL, Montori V, Schlechte JA, Wass J (2011) Diagnosis and treatment of hyperprolactinemia: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96:273–288

    CAS  PubMed  Google Scholar 

  3. De Marinis L, Mancini A, Valle D, Bianchi A, Gentilella R, Milardi D, Mascadri C, Giustina A (2000) Effects of galanin on growth hormone and prolactin secretion in anorexia nervosa. Metabolism 49(2):155–159

    PubMed  Google Scholar 

  4. Bernard V, Young J, Binart N (2019) Prolactin - a pleiotropic factor in health and disease. Nat Rev Endocrinol 15(6):356–365

    CAS  PubMed  Google Scholar 

  5. Bole-Feysot C, Goffin V, Edery M, Binart N, Kelly PA (1998) Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr Rev 19:225–268

    CAS  PubMed  Google Scholar 

  6. Goffin V, Binart N, Touraine P, Kelly PA (2002) Prolactin: the new biology of an old hormone. Annu Rev Physiol 64:47–67

    CAS  PubMed  Google Scholar 

  7. Ben-Jonathan N, LaPensee CR, LaPensee EW (2008) What can we learn from rodents about prolactin in humans? Endocr Rev 29:1–41

    CAS  PubMed  Google Scholar 

  8. Vilar L, Freitas MC, Naves LA, Casulari LA, Azevedo M, Montenegro R, Barros AI, Jr, Faria M, Nascimento GC, Lima JG, Nóbrega LH, Cruz TP, Mota A, Ramos A, Violante A, Lamounier FA, Gadelha MR, Czepielewski MA, Glezer A, Bronstein MD (2008) Diagnosis and management of hyperprolactinemia: results of a Brazilian multicenter study with 1234 patients. J Endocrinol Invest 31:436–444

    CAS  PubMed  Google Scholar 

  9. Casanueva FF, Molitch ME, Schlechte JA, Abs R, Bonert V, Bronstein MD, Brue T, Cappabianca P, Colao A, Fahlbusch R, Fideleff H, Hadani M, Kelly P, Kleinberg D, Laws E, Marek J, Scanlon M, Sobrinho LG, Wass JA, Giustina A (2006) Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. Clin Endocrinol 65:265–273

    Google Scholar 

  10. Giustina A, Gola M, Doga M, Rosei EA (2001) Clinical review 136: Primary lymphoma of the pituitary: an emerging clinical entity. J Clin Endocrinol Metab 86(10):4567–4575

    CAS  PubMed  Google Scholar 

  11. De Marinis L, Bonadonna S, Bianchi A, Maira G, Giustina A (2005) Primary empty sella. J Clin Endocrinol Metab 90(9):5471–5477

    PubMed  Google Scholar 

  12. Giustina A, Aimaretti G, Bondanelli M, Buzi F, Cannavò S, Cirillo S, Colao A, De Marinis L, Ferone D, Gasperi M, Grottoli S, Porcelli T, Ghigo E (2010) degli Uberti E: Primary empty sella: why and when to investigate hypothalamic-pituitary function. J Endocrinol Invest. 33(5):343–346

    CAS  PubMed  Google Scholar 

  13. Carpinteri R, Patelli I, Casanueva FF, Giustina A (2009) Pituitary tumours: inflammatory and granulomatous expansive lesions of the pituitary. Best Pract Res Clin Endocrinol Metab 23(5):639–650

    CAS  PubMed  Google Scholar 

  14. Giustina A, Mazziotti G, Canalis E (2008) Growth hormone, insulin- like growth factors, and the skeleton. Endocr Rev 29:535–559

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Arnaldi G, Angeli A, Atkinson AB, Bertagna X, Cavagnini F, Chrousos GP, Fava GA, Findling JW, Gaillard RC, Grossman AB, Kola B, Lacroix A, Mancini T, Mantero F, Newell-Price J, Nieman LK, Sonino N, Vance ML, Giustina A, Boscaro M (2003) Diagnosis and complications of Cushing’s syndrome: a consensus statement. J Clin Endocrinol Metab 88(12):5593–5602

    CAS  PubMed  Google Scholar 

  16. Frara S, Losa M, Doga M, Formenti AM, Mortini P, Mazziotti G, Giustina A (2018) High prevalence of radiological vertebral fractures in patients with TSH-secreting pituitary adenoma. J Endocr Soc 2(9):1089–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bataille-Simoneau N, Gerland K, Chappard D, Basle MF, Mercier L (1996) Expression of prolactin receptors in human osteosarcoma cells. Biochem Biophys Res Commun 229(1):323–328

    CAS  PubMed  Google Scholar 

  18. Wongdee K, Tulalamba W, Thongbunchoo J, Krishnamra N, Charoenphandhu N (2011) Prolactin alters the mRNA expression of osteoblastderived osteoclastogenic factors in osteoblastlike UMR106 cells. Mol Cell Biochem 349(1–2):195–204

    CAS  PubMed  Google Scholar 

  19. Seriwatanachai D, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, Suthiphongchai T, Krishnamra N (2008) Prolactin directly enhances bone turnover by raising osteoblast expressed receptor activator of nuclear factor kB ligand/osteoprotegerin ratio. Bone 42(3):535–546

    CAS  PubMed  Google Scholar 

  20. Coss D, Yang L, Kuo CB, Xu X, Luben RA, Walker AM (2000) Effects of prolactin on osteoblast alkaline phosphatase and bone formation in the developing rat. Am J Physiol Endocrinol Metab 279(6):E1216–E1225

    CAS  PubMed  Google Scholar 

  21. Seriwatanachai D, Krishnamra N, van Leeuwen JP (2009) Evidence for direct effects of prolactin on human osteoblasts: inhibition of cell growth and mineralization. J Cell Biochem 107(4):677–685

    CAS  PubMed  Google Scholar 

  22. Wang C, Chan V (1982) Divergent effects of prolactin on estrogen and progesterone production by granulosa cells of rat Graafian follicles. Endocrinology 110(4):1085–1093

    CAS  PubMed  Google Scholar 

  23. Wang C, Hsueh AJ, Erickson GF (1980) Prolactin inhibition of estrogen production by cultured rat granulosa cells. Mol Cell Endocrinol 20(2):135–144

    CAS  PubMed  Google Scholar 

  24. Krishnamra N, Seemoung J (1996) Effects of acute and long-term administration of prolactin on bone 45Ca uptake, calcium deposit, and calcium resorption in weaned, young, and mature rats. Can J Physiol Pharmacol 74(10):1157–1165

    CAS  PubMed  Google Scholar 

  25. Thongchote K, Charoenphandhu N, Krishnamra N (2008) High physiological prolactin induced by pituitary transplantation decreases BMD and BMC in the femoral metaphysis, but not in the diaphysis of adult female rats. J Physiol Sci 58(1):39–45

    CAS  PubMed  Google Scholar 

  26. Adler RA, Farrell ME, Krieg RJ, Deiss WP (1989) Hypogonadism does not mediate urinary calcium loss in pituitary-grafted rats. Metabolism 38(8):805–809

    CAS  PubMed  Google Scholar 

  27. Piyabhan P, Krishnamra N, Limlomwongse L (2000) Changes in the regulation of calcium metabolism and bone calcium content during growth in the absence of endogenous prolactin and during hyperprolactinemia: a longitudinal study in male and female Wistar rats. Can J Physiol Pharmacol 78(10):757–765

    CAS  PubMed  Google Scholar 

  28. Mazziotti G, Chiavistelli S, Giustina A (2015) Pituitary diseases and bone. Endocrinol Metab Clin N Am 44(1):171–180

    Google Scholar 

  29. Naylor KE, Iqbal P, Fledelius C, Fraser RB, Eastell R (2000) The effect of pregnancy on bone density and bone turnover. J Bone Miner Res 15(1):129–137

    CAS  PubMed  Google Scholar 

  30. Shaarawy M, El-Dawakhly AS, Mosaad M, El-Sadek MM (1999) Biomarkers of bone turnover and bone mineral density in hyperprolactinemic amenorrheic women. Clin Chem Lab Med 37(4):433–438

    CAS  PubMed  Google Scholar 

  31. Colao A, Di Somma C, Loche S, Di Sarno A, Klain M, Pivonello R, Pietrosante M, Salvatore M, Lombardi G (2000) Prolactinomas in adolescents: persistent bone loss after 2 years of prolactin normalization. Clin Endocrinol (Oxf) 52(3):319–327

    CAS  Google Scholar 

  32. Di Somma C, Colao A, Di Sarno A, Klain M, Landi ML, Facciolli G, Pivonello R, Panza N, Salvatore M, Lombardi G (1998) Bone marker and bone density responses to dopamine agonist therapy in hyperprolactinemic males. J Clin Endocrinol Metab 83(3):807–813

    PubMed  Google Scholar 

  33. Mazziotti G, Biagioli E, Maffezzoni F, Spinello M, Serra V, Maroldi R, Floriani I, Giustina A (2015) Bone turnover, bone mineral density, and fracture risk in acromegaly: a meta-analysis. J Clin Endocrinol Metab 100(2):384–394

    CAS  PubMed  Google Scholar 

  34. Naliato EC, Farias ML, Braucks GR, Costa FS, Zylberberg D, Violante AH (2005) Prevalence of osteopenia in men with prolactinoma. J Endocrinol Invest 28(1):12–17

    CAS  PubMed  Google Scholar 

  35. Biller BM, Baum HB, Rosenthal DI, Saxe VC, Charpie PM, Klibanski A (1992) Progressive trabecular osteopenia in women with hyperprolactinemic amenorrhea. J Clin Endocrinol Metab 75(3):692–697

    CAS  PubMed  Google Scholar 

  36. Cann CE, Martin MC, Genant HK, Jaffe RB (1984) Decreased spinal mineral content in amenorrheic women. JAMA 251(5):626–629

    CAS  PubMed  Google Scholar 

  37. Naliato EC, Violante AH, Caldas D, Farias ML, Bussade I, Lamounier Filho A, Loureiro CR, Fontes R, Schrank Y, Loures T, Colao A (2008) Bone density in women with prolactinoma treated with dopamine agonists. Pituitary 11(1):21–28

    CAS  PubMed  Google Scholar 

  38. Klibanski A, Neer RM, Beitins IZ, Ridgway EC, Zervas NT, McArthur JW (1980) Decreased bone density in hyperprolactinemic women. N Engl J Med 303(26):1511–1514

    CAS  PubMed  Google Scholar 

  39. Klibanski A, Biller BM, Rosenthal DI, Schoenfeld DA, Saxe V (1988) Effects of prolactin and estrogen deficiency in amenorrheic bone loss. J Clin Endocrinol Metab 67(1):124–130

    CAS  PubMed  Google Scholar 

  40. Greenspan SL, Oppenheim DS, Klibanski A (1989) Importance of gonadal steroids to bone mass in men with hyperprolactinemic hypogonadism. Ann Intern Med 110(7):526–531

    CAS  PubMed  Google Scholar 

  41. Klibanski A, Greenspan SL (1986) Increase in bone mass after treatment of hyperprolactinemic amenorrhea. N Engl J Med 315:542–546

    CAS  PubMed  Google Scholar 

  42. Angeli A, Guglielmi G, Dovio A, Capelli G, de Feo D, Giannini S, Giorgino R, Moro L, Giustina A (2006) High prevalence of asymptomatic vertebral fractures in post-menopausal women receiving chronic glucocorticoid therapy: a cross-sectional outpatient study. Bone 39(2):253–259

    CAS  PubMed  Google Scholar 

  43. Lindsay R, Pack S, Li Z (2005) Longitudinal progression of fracture prevalence through a population of postmenopausal women with osteoporosis. Osteoporos Int 16(3):306–312

    PubMed  Google Scholar 

  44. Johansson H, Oden A, McCloskey EV, Kanis JA (2014) Mild morphometric vertebral fractures predict vertebral fractures but not non-vertebral fractures. Osteoporos Int 25(1):235–241

    CAS  PubMed  Google Scholar 

  45. Soto-Pedre E, Newey PJ, Bevan JS, Leese GP (2017) Morbidity and mortality in patients with hyperprolactinaemia: the PROLEARS study. Endocr Connect 6(8):580–588

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Vestergaard P, Jørgensen JO, Hagen C, Hoeck HC, Laurberg P, Rejnmark L, Brixen K, Weeke J, Andersen M, Conceicao FL, Nielsen TL, Mosekilde L (2002) Fracture risk is increased in patients with GH deficiency or untreated prolactinomas—a case-control study. Clin Endocrinol (Oxf) 56(2):159–167

    Google Scholar 

  47. Formenti AM, Tecilazich F, Giubbini R, Giustina A (2019) Risk of vertebral fractures in hypoparathyroidism. Rev Endocr Metab Disord 20(3):295–302

    CAS  PubMed  Google Scholar 

  48. Formenti AM, Doga M, Frara S, Ritelli M, Colombi M, Banfi G, Giustina A (2019) Skeletal fragility: an emerging complication of Ehlers-Danlos syndrome. Endocrine 63(2):225–230

    CAS  PubMed  Google Scholar 

  49. Genant HK, Delmas PD, Chen P, Jiang Y, Eriksen EF, Dalsky GP, Marcus R, Martin S (2007) J.: Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int 18(1):69–76

    CAS  PubMed  Google Scholar 

  50. Mazziotti G, Doga M, Frara S, Maffezzoni F, Porcelli T, Cerri L, Maroldi R, Giustina A (2016) Incidence of morphometric vertebral fractures in adult patients with growth hormone deficiency. Endocrine 52(1):103–110

    CAS  PubMed  Google Scholar 

  51. Mazziotti G, Bianchi A, Porcelli T, Mormando M, Maffezzoni F, Cristiano A, Giampietro A, De Marinis L, Giustina A (2013) Vertebral fractures in patients with acromegaly: a 3-year prospective study. J Clin Endocrinol Metab 98(8):3402–3410

    CAS  PubMed  Google Scholar 

  52. Mazziotti G, Mancini T, Mormando M, De Menis E, Bianchi A, Doga M, Porcelli T, Vescovi PP, De Marinis L, Giustina A (2011) High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. Pituitary 14(4):299–306

    CAS  PubMed  Google Scholar 

  53. Mazziotti G, Porcelli T, Mormando M, De Menis E, Bianchi A, Mejia C, Mancini T, De Marinis L, Giustina A (2011) Vertebral fractures in males with prolactinoma. Endocrine 39(3):288–293

    CAS  PubMed  Google Scholar 

  54. Mazziotti G, Frara S, Giustina A (2018) Pituitary diseases and bone. Endocr Rev 39(4):440–488

    PubMed  Google Scholar 

  55. Pedersini R, Amoroso V, Maffezzoni F, Gallo F, Turla A, Monteverdi S, Ardine M, Ravanelli M, Rodella F, Formenti AM, Dalla Volta A, Simoncini EL, Giustina A, Maroldi R, Berruti A (2019) Association of fat body mass with vertebral fractures in postmenopausal women with early breast cancer undergoing adjuvant aromatase inhibitor therapy. JAMA Netw Open 2(9):e1911080

    PubMed  PubMed Central  Google Scholar 

  56. Giustina A, Barkan A, Beckers A, Biermasz N, Biller BMK, Boguszewski C, Bolanowski M, Bonnert V, Bronstein MD, Casanueva FF, Clemmons D, Colao A, Ferone D, Fleseriu M, Frara S, Gadelha MR, Ghigo E, Gurnell M, Heaney AP, Ho K, Ioachimescu A, Katznelson L, Kelestimur F, Kopchick J, Krsek M, Lamberts S, Losa M, Luger A, Maffei P, Marazuela M, Mazziotti G, Mercado M, Mortini P, Neggers S, Pereira AM, Petersenn S, Puig-Domingo M, Salvatori R, Shimon I, Strasburger C, Tsagarakis S, van der Lely AJ, Wass J, Zatelli MC, Melmed S (2020) A consensus on the diagnosis and treatment of acromegaly comorbidities: an update. J Clin Endocrinol Metab. https://doi.org/10.1210/clinem/dgz096

    Article  PubMed  PubMed Central  Google Scholar 

  57. Bonadonna S, Mazziotti G, Nuzzo M, Bianchi A, Fusco A, De Marinis L, Giustina A (2005) Increased prevalence of radiological spinal deformities in active acromegaly: a cross-sectional study in postmenopausal women. J Bone Miner Res 20(10):1837–1844

    PubMed  Google Scholar 

  58. Mazziotti G, Bianchi A, Bonadonna S, Cimino V, Patelli I, Fusco A, Pontecorvi A, De Marinis L, Giustina A (2008) Prevalence of vertebral fractures in men with acromegaly. J Clin Endocrinol Metab 93(12):4649–4655

    CAS  PubMed  Google Scholar 

  59. Schlechte JA, Sherman B, Martin R (1983) Bone density in amenorrheic women with and without hyperprolactinemia. J Clin Endocrinol Metab 56(6):1120–1123

    CAS  PubMed  Google Scholar 

  60. Pedersini R, Monteverdi S, Mazziotti G, Amoroso V, Roca E, Maffezzoni F, Vassalli L, Rodella F, Formenti AM, Frara S, Maroldi R, Berruti A, Simoncini E, Giustina A (2017) Morphometric vertebral fractures in breast cancer patients treated with adjuvant aromatase inhibitor therapy: A cross-sectional study. Bone 97:147–152

    CAS  PubMed  Google Scholar 

  61. Giustina A (2020) Acromegaly and vertebral fractures: facts and questions. Trends Endocrinol Metab 31(4):274–275. https://doi.org/10.1016/j.tem.2020.01.011

    Article  CAS  PubMed  Google Scholar 

  62. Petersenn S, Giustina A (2020) Diagnosis and management of prolactinomas: current challenges. Pituitary 23:1

    CAS  PubMed  Google Scholar 

  63. WHO Collaborating Centre for Drug Statistics Methodology. WHO Collaborating Centre for Drug Statistics Methodology; 2018. ATC/DDD Index—antipsychotics. https://www.whocc.no/atc_ddd_index/?code=N05A

  64. Huhn H, Nikolakopoulou A, Schneider-Thoma J, Krause M, Samara M, Peter N, Arndt T, Bäckers L, Rothe P, Cipriani A, Davis J, Salanti G, Leucht S (2019) Comparative efficacy and tolerability of 32 oral antipsychotics for the acute treatment of adults with multi-episode schizophrenia: a systematic review and network meta-analysis. Lancet 394(10202):939–951

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Mancini T, Casanueva FF, Giustina A (2008) Hyperprolactinemia and prolactinomas. Endocrinol Metab Clin North Am 37(1):67–99

    CAS  PubMed  Google Scholar 

  66. Smith S, Wheeler M, Murray R, O’Keane V (2002) The effects of anti-psychotic induced hyperprolactinaemia on the hypothalamic-pituitary-gonadal axis. J Clin Psychopharmacol 22:109–114

    CAS  PubMed  Google Scholar 

  67. Howes OD, Wheeler MJ, Pilowsky LS, Landau S, Murray RM, Smith S (2007) Sexual function and gonadal hormones in patients taking antipsychotic treatment for schizophrenia or schizoaffective disorder. J Clin Psychiatry 68(3):361–367

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Pacchiarotti I, Murru A, Kotzalidis GD, Bonnin CM, Mazzarini L, Colom F, Vieta E (2015) Hyperprolactinemia and medications for bipolar disorder: systematic review of a neglected issue in clinical practice. Eur Neuropsychopharmacol 25(8):1045–1059

    CAS  PubMed  Google Scholar 

  69. Crews MP, Howes OD (2012) Is antipsychotic treatment linked to low bone mineral density and osteoporosis? A review of the evidence and the clinical implications. Hum Psychopharmacol 27(1):15–23

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Lally J, Sahl AB, Murphy KC, Gaughran F, Stubbs B (2019) Serum Prolactin and Bone Mineral Density in Schizophrenia: A Systematic Review. Clin Psychopharmacol Neurosci 17(3):333–342

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang M, Hou R, Jian J, Mi G, Qiu H, Cao B, Tang M (2014) Effects of antipsychotics on bone mineral density and prolactin levels in patients with schizophrenia: a 12-month prospective study. Hum Psychopharmacol 29:183–189

    PubMed  Google Scholar 

  72. Pouwels S, van Staa TP, Egberts AC, Leufkens HG, Cooper C, de Vries F (2009) Antipsychotic use and the risk of hip/femur fracture: a population-based case-control study. Osteoporos Int 20:1499–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Bolton JM, Targownik LE, Leung S, Sareen J, Leslie WD (2011) Risk of low bone mineral density associated with psychotropic medications and mental disorders in postmenopausal women. J Clin Psychopharmacol 31:56–60

    PubMed  Google Scholar 

  74. Bakken MS, Schjøtt J, Engeland A, Engesaeter LB, Ruths S (2016) Antipsychotic drugs and risk of hip fracture in people aged 60 and older in Norway. J Am Geriatr Soc 64:1203–1209

    PubMed  Google Scholar 

  75. Lee SH, Hsu WT, Lai CC, Esmaily-Fard A, Tsai YW, Chiu CC, Wang J, Chang SS, Lee CC (2017) Use of antipsychotics increases the risk of fracture: a systematic review and meta-analysis. Osteoporos Int 28(4):1167–1178

    CAS  PubMed  Google Scholar 

  76. Mazziotti G, Canalis E, Giustina A (2010) Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med 123(10):877–884

    CAS  PubMed  Google Scholar 

  77. Bouillon R, Marcocci C, Carmeliet G, Bikle D, White JH, Dawson-Hughes B, Lips P, Munns CR, Lazaretti-Castro M, Giustina A, Bilezikian J (2019) Skeletal and extraskeletal actions of vitamin D: current evidence and outstanding questions. Endocr Rev 40(4):1109–1151

    PubMed  Google Scholar 

  78. Giustina A, Adler RA, Binkley N, Bollerslev J, Bouillon R, Dawson-Hughes B, Ebeling PR, Feldman D, Formenti AM, Lazaretti-Castro M, Marcocci C, Rizzoli R, Sempos CT, Bilezikian JP (2020) Consensus statement from 2nd International Conference on Controversies in Vitamin D. Rev Endocrinol Metab Disord. https://doi.org/10.1007/s11154-019-09532-w

    Article  Google Scholar 

  79. Muench J, Hamer AM (2010) Adverse effects of antipsychotic medications. Am Fam Physician 81(5):617–622

    PubMed  Google Scholar 

  80. Chisholm D, Gureje O, Saldivia S (2008) Schizophrenia treatment in the developing world: an interregional and multinational cost-effectiveness analysis. Bull World Health Organ 86:542–551

    PubMed  PubMed Central  Google Scholar 

  81. Coronas R, Cobo J, Giménez-Palop O, Ortega E, Márquez M (2012) Safety of cabergoline in the management of pituitary prolactin-induced symptoms with patients treated with atypical neuroleptics. Curr Drug Saf 7(2):92–98

    CAS  PubMed  Google Scholar 

  82. Kalkavoura CS, Michopoulos I, Arvanitakis P, Theodoropoulou P, Dimopoulou K, Tzebelikos E, Lykouras L (2013) Effects of cabergoline on hyperprolactinemia, psychopathology, and sexual functioning in schizophrenic patients. Exp Clin Psychopharmacol 21(4):332–341

    CAS  PubMed  Google Scholar 

  83. Jano E, Johnson M, Chen H, Aparasu RR (2008) Determinants of atypical antipsychotic use among antipsychotic users in community-dwelling elderly, 1996–2004. Curr Med Res Opin 24(3):709–716

    PubMed  Google Scholar 

  84. Mazziotti G, Formenti AM, Frara S, Olivetti R, Banfi G, Memo M, Maroldi R, Giubbini R, Giustina A (2018) High prevalence of radiological vertebral fractures in women on thyroid-stimulating hormone-suppressive therapy for thyroid carcinoma. J Clin Endocrinol Metab 103(3):956–964

    PubMed  Google Scholar 

  85. Mazziotti G, Formenti AM, Adler RA, Bilezikian JP, Grossman A, Sbardella E, Minisola S, Giustina A (2016) Glucocorticoid-induced osteoporosis: pathophysiological role of GH/IGF-I and PTH/VITAMIN D axes, treatment options and guidelines. Endocrine 54(3):603–611

    CAS  PubMed  Google Scholar 

  86. Gomez L, Stubbs B, Shirazi A, Vancampfort D, Gaughran F, Lally J (2016) Lower bone mineral density at the hip and lumbar spine in people with psychosis versus controls: a comprehensive review and skeletal site-specific meta-analysis. Curr Osteoporos Rep 14(6):249–259

    PubMed  PubMed Central  Google Scholar 

  87. Weaver J, Kawsky J, Corboy A (2019) Antipsychotic use and fracture risk: an evaluation of incidence at a veterans affairs medical center. Ment Health Clin 9(1):6–11

    PubMed  PubMed Central  Google Scholar 

  88. Giustina A, Adler RA, Binkley N, Bouillon R, Ebeling PR, Lazaretti-Castro M, Marcocci C, Rizzoli R, Sempos CT, Bilezikian JP (2019) Controversies in vitamin D: summary statement from an international conference. J Clin Endocrinol Metab 104(2):234–240

    PubMed  Google Scholar 

  89. Sempos CT, Heijboer AC, Bikle DD, Bollerslev J, Bouillon R, Brannon PM, DeLuca HF, Jones G, Munns CF, Bilezikian JP, Giustina A, Binkley N (2018) Vitamin D assays and the definition of hypovitaminosis D: results from the first international conference on controversies in vitamin D. Br J Clin Pharmacol 84(10):2194–2207

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mazziotti G, Bilezikian J, Canalis E, Cocchi D, Giustina A (2012) New understanding and treatments for osteoporosis. Endocrine 41(1):58–69

    CAS  PubMed  Google Scholar 

  91. Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 30(9):905–916 357)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Giustina.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

di Filippo, L., Doga, M., Resmini, E. et al. Hyperprolactinemia and bone. Pituitary 23, 314–321 (2020). https://doi.org/10.1007/s11102-020-01041-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11102-020-01041-3

Keywords

Navigation