Skip to main content
Log in

The current status on secondary metabolites produced by plant pathogenic Colletotrichum species

  • Published:
Phytochemistry Reviews Aims and scope Submit manuscript

Abstract

The fungal genus Colletotrichum contains about 190 species, many of which are responsible for serious plant diseases including those of commercial crops. These species infect a wide range of crops in the tropical, sub-tropical and temperate regions of the world. The diseases caused by Colletotrichum species are known as “anthracnose diseases” and are characterized by sunken necrotic tissue in which masses of orange conidia are produced. A significant number of the metabolites of Colletotrichum species are known to contribute to their pathogenicity. These phytotoxic metabolites when applied to the leaves of their host plants, induced symptoms which were similar to those of the anthracnose caused by the fungus. These metabolites have been shown to play a significant role in the mechanism of infection and pathogenesis. This review deals with the structures and biological activity of the secondary metabolites which have been isolated from these economically important filamentous fungi. The literature up to July 2018 is reviewed and 160 references are cited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

DMAPP:

Dimethylallyl diphosphate

DMATS:

Dimethylallyl tryptophan synthase

ECD:

Electronic circular dichroism

IAA:

Indole acetic acid

IAM:

Indole-3-acetamide

IPP:

Isopentenyl diphosphate

MAPKs:

Mitogen-activated protein kinases

MIC:

Minimal inhibitory concentration

NRPS:

Non-ribosomal peptide synthetase

PKS:

Polyketide synthase

PPTase:

Phosphopantetheinyl transferase

ROS:

Reactive oxygen species

SM:

Secondary metabolites

STS:

Sesquiterpene synthase

TS:

Terpene synthase

References

  • Abang MM, Abraham W-R, Asiedu R et al (2009) Secondary metabolite profile and phytotoxic activity of genetically distinct forms of Colletotrichum gloeosporioides from yam (Dioscorea spp.). Mycol Res 113:130–140

    Article  CAS  PubMed  Google Scholar 

  • Abou-Zaid M, Dumas M, Chauret D et al (1997) C-methyl flavonols from the fungus Colletotrichum dematium f.sp. epilobii. Phytochemistry 45:957–961

    Article  CAS  Google Scholar 

  • Amusa NA (1994) Production, partial purification and bioassay of toxic metabolites of three plant pathogenic species of Colletotrichum in Nigeria. Mycopathologia 128:161–166

    Article  CAS  Google Scholar 

  • Amusa NA (2001) Screening of cassava and yam cultivars for resistance to anthracnose using toxic metabolites of Colletotrichum species. Mycopathologia 150:137–142

    Article  CAS  PubMed  Google Scholar 

  • André A, Wojtowicz N, Touré K et al (2017) New acorane sesquiterpenes isolated from the endophytic fungus Colletotrichum gloeosporioides SNB-GSS07. Tetrahedron Lett 58:1269–1272

    Article  CAS  Google Scholar 

  • Aoyagi A, Ito-Kobayashi M, Ono Y et al (2008) Colletoic acid, a novel 11β-hydroxysteroid dehydrogenase type 1 inhibitor from Colletotrichum gloeosporioides SANK 21404. J Antibiot (Tokyo) 61:136–141

    Article  CAS  Google Scholar 

  • Arivudainambi USE, Anand TD, Shanmugaiah V et al (2011) Novel bioactive metabolites producing endophytic fungus Colletotrichum gloeosporioides against multidrug-resistant Staphylococcus aureus. FEMS Immunol Med Microbiol 61:340–345

    Article  CAS  PubMed  Google Scholar 

  • Austin MB, Noel JP (2003) The chalcone synthase superfamily of type III polyketide synthases. Nat Prod Rep 20:79–110

    Article  CAS  PubMed  Google Scholar 

  • Azizuddin S, Makhmoor T, Choudhary MI (2010) Radical scavenging potential of compounds isolated from Vitex agnus-castus. Turk J Chem 34:119–126

    CAS  Google Scholar 

  • Bach TJ, Rohmer M (2013) Isoprenoid synthesis in plants and microorganisms: new concepts and experimental approaches. Springer, New York

    Book  Google Scholar 

  • Bailey JA, Jeger MJ (1992) Colletotrichum: biology, pathology and control. CAB International, Wallingford

    Google Scholar 

  • Ballio A, Bottalico A, Bounocore V et al (1969) Production and isolation of aspergillomarasmin B (lycomarasmic acid) from cultures of Colletotrichum gloeosporioides (Gloeosporium olivarum). Phytopathol Mediterr 8:187–196

    CAS  Google Scholar 

  • Baroncelli R, Amby DB, Zapparata A et al (2016) Gene family expansions and contractions are associated with host range in plant pathogens of the genus Colletotrichum. BMC Genom 17:555

    Article  CAS  Google Scholar 

  • Bergmann S, Schümann J, Scherlach K et al (2007) Genomics-driven discovery of PKS-NRPS hybrid metabolites from Aspergillus nidulans. Nat Chem Biol 3:213–217

    Article  CAS  PubMed  Google Scholar 

  • Boettger D, Hertweck C (2013) Molecular diversity sculpted by fungal PKS-NRPS hybrids. ChemBioChem 14:28–42

    Article  CAS  Google Scholar 

  • Bousquet JF, Vegh I, Pouteau-Thouvenot M et al (1971) Isolement de l’aspergillomarasmine A de cultures de Colletotrichum gloeosporioides Penz., agent pathogene des saules. Ann Phytopathol 3:407–408

    CAS  Google Scholar 

  • Buchvaldt AD, Manczak T, Petersen MA, Sundelin T, Weitzel C, Grajewski M, Simonsen HT, Jensen B (2016) Role of the Colletotrichum acutatum sesquiterpene synthase CaTPS in the biosynthesis of sesquiterpenoids. Mycrobiology 162(10):1773–1783

    Google Scholar 

  • Cannon PF, Bridge PD, Monte E (2000) Linking the past, present, and future of Colletotrichum systematics. In: Prusky D, Freeman S, Dickman MB (eds) Colletotrichum: host specificity, pathology, and host-pathogen interaction. APS Press, St Paul, pp 1–19

    Google Scholar 

  • Cao J, Gao L, Chen Y et al (2017) Citrinal B, natural 11 beta-hydroxysteroid dehydrogennase type 1 inhibitor identified from structure-based virtual screening. Fitoterapia 123:29–34

    Article  CAS  PubMed  Google Scholar 

  • Carling RW, Holmes AB (1986) Studies on the synthesis of gloeosporone—synthesis of the proposed 2,8-disubstituted oxocane structure. Tetrahedron Lett 27:6133–6136

    Article  CAS  Google Scholar 

  • Challis GL, Naismith JH (2004) Structural aspects of non-ribosomal peptide biosynthesis. Curr Opin Struct Biol 14:748–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chapla VM, Zeraik ML, Leptokarydis IH et al (2014) Antifungal compounds produced by Colletotrichum gloeosporioides, an endophytic fungus from Michelia champaca. Molecules 19:19243–19252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen G, Dai HF, Sha Y, Pei YH (2011) Two new compounds from the endophytic fungus Colletotrichum sp. L10 of Cephalotaxus hainanensis. J Asian Nat Prod Res 13:1042–1046

    Article  CAS  PubMed  Google Scholar 

  • Chen XW, Yang ZD, Sun JH et al (2018a) Colletotrichine A, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Nat Prod Res 32:880–884

    Article  CAS  PubMed  Google Scholar 

  • Chen XW, Yang ZD, Li XF et al (2018b) Colletotrichine B, a new sesquiterpenoid from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Nat Prod Res 6419:1–5

    Google Scholar 

  • Chithra S, Jasim B, Sachidanandan P et al (2014) Piperine production by endophytic fungus Colletotrichum gloeosporioides isolated from Piper nigrum. Phytomedicine 21:534–540

    Article  CAS  PubMed  Google Scholar 

  • Choi J, Park JG, Ali S et al (2016) Mycobiology systematic analysis of the anticancer agent Taxol- producing capacity in Colletotrichum species and use of the species for Taxol production. Mycobiology 44:105–111

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen KB, Van Klink JW, Weavers RT et al (2005) Novel chemotaxonomic markers of the Alternaria infectoria species-group. J Agric Food Chem 53:9431–9435

    Article  CAS  PubMed  Google Scholar 

  • Chung KR, Shilts T, Ertürk Ü et al (2003) Indole derivatives produced by the fungus Colletotrichum acutatum causing lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol Lett 226:23–30

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Mathieu V, Masi M et al (2016) Higginsianins A and B, two diterpenoid α-pyrones produced by Colletotrichum higginsianum, with in vitro cytostatic activity. J Nat Prod 79:116–125

    Article  CAS  PubMed  Google Scholar 

  • Collado IG, Femenía-Ríos M, Macías-Sánchez AJ et al (2006) Novel antioxidants which are obtained from a natural and synthetic source and method of obtaining same. PCT patent WO 2006120266

  • Collemare J, Billard A, Böhnert HU et al (2008) Biosynthesis of secondary metabolites in the rice blast fungus Magnaporthe grisea: the role of hybrid PKS-NRPS in pathogenicity. Mycol Res 112:207–215

    Article  CAS  PubMed  Google Scholar 

  • da Silva AFC, Rodrigues ML, Farias SE et al (2004) Glucosylceramides in Colletotrichum gloeosporioides are involved in the differentiation of conidia into mycelial cells. FEBS Lett 561:137–143

    Article  CAS  PubMed  Google Scholar 

  • Detterbeck R, Hesse M (2003) Konfiguration und enantioselektive synthese des pilzmetaboliten WF14861. Helv Chim Acta 86:222–232

    Article  CAS  Google Scholar 

  • Di Lorenzo M, Poppelaars S, Stork M et al (2004) A nonribosomal peptide synthetase with a novel domain organization is essential for siderophore biosynthesis in Vibrio anguillarum. J Bacteriol 186:7327–7336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillon MP, Simpson TJ, Sweeney JB (1992) Enantioselective synthesis of monocerin and fusarentin ethers: antifungal and insecticidal fungal metabolites. Tetrahedron Lett 33:7569–7572

    Article  CAS  Google Scholar 

  • Ding J, Zhao J, Yang Z et al (2017) Microbial natural product alternariol 5-O-Methyl ether inhibits HIV-1 integration by blocking nuclear import of the pre-integration complex. Viruses 9:1–14

    Article  CAS  Google Scholar 

  • Donadio S, Monciardini P, Sosio M (2007) Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat Prod Rep 24:1073–1109

    Article  CAS  PubMed  Google Scholar 

  • Duke SO, Gohbara M, Paul RN, Duke MV (1992) Colletotrichin causes rapid membrane damage to plant cells. J Phytopathol 134:289–305

    Article  CAS  Google Scholar 

  • Fan NW, Chang HS, Cheng MJ et al (2014) Secondary metabolites from the endophytic fungus Xylaria cubensis. Helv Chim Acta 97:1689–1699

    Article  CAS  Google Scholar 

  • Fan A, Winkelblech J, Li SM (2015) Impacts and perspectives of prenyltransferases of the DMATS superfamily for use in biotechnology. Appl Microbiol Biotechnol 99:7399–7415

    Article  CAS  PubMed  Google Scholar 

  • Femenía-Ríos M, García-Pajón CM, Hernández-Galán R et al (2006) Synthesis and free radical scavenging activity of a novel metabolite from the fungus Colletotrichum gloeosporioides. Bioorg Med Chem Lett 16:5836–5839

    Article  CAS  PubMed  Google Scholar 

  • Finking R, Marahiel MA (2004) Biosynthesis of nonribosomal peptides. Ann Rev Microbiol 58:453–488

    Article  CAS  Google Scholar 

  • Fischbach MA, Walsh CT (2006) Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem Rev 106:3468–3496

    Article  CAS  Google Scholar 

  • Fu MJ, Wang XJ (2005) Accumulation of carotenoid in Colletotrichum gloeosporioides induced by blue light. Acta Microbiol Sin 45:795–797

    CAS  Google Scholar 

  • Fuller AT, Mellows G, Woolford M et al (1971) Pseudomonic acid: an antibiotic produced by Pseudomonas fluorescens. Nature 234:416–417

    Article  CAS  PubMed  Google Scholar 

  • Gan P, Ikeda K, Irieda H et al (2013) Comparative genomic and transcriptomic analyses reveal the hemibiotrophic stage shift of Colletotrichum fungi. New Phytol 197:1236–1249

    Article  CAS  PubMed  Google Scholar 

  • García-Pajón CM, Collado IG (2003) Secondary metabolites isolated from Colletotrichum species. Nat Prod Rep 20:426–431

    Article  PubMed  Google Scholar 

  • Goddard R, Hatton IK, Howard JAK et al (1976) X-Ray crystal and molecular structure of acetylcolletotrichin (colletotrichin), a metabolite of Colletotrichum capsici. J Chem Soc Chem Commun 11:408

    Article  Google Scholar 

  • Gohbara M, Hyeon SB, Suzuki A et al (1976) Isolation and structure elucidation of colletopyrone from Colletotrichum nicotianae. Agric Biol Chem 40:1453–1455

    CAS  Google Scholar 

  • Gross H, Loper JE (2009) Genomics of secondary metabolite production by Pseudomonas spp. Nat Prod Rep 26:1408–1446

    Article  CAS  Google Scholar 

  • Grove JF, Speake RN, Ward G (1966) Metabolic products of Colletotrichum capsici: isolation and characterisation of acetylcolletotrichin and colletodiol. J Chem Soc C Org. https://doi.org/10.1039/j39660000230

    Article  Google Scholar 

  • Grundmann A, Li SM (2005) Overproduction, purification and characterization of FtmPT1, a brevianamide F prenyltransferase from Aspergillus fumigatus. Microbiology 151:2199–2207

    Article  CAS  PubMed  Google Scholar 

  • Guimarães DO, Borges WS, Vieira NJ et al (2010) Diketopiperazines produced by endophytic fungi found in association with two Asteraceae species. Phytochemistry 71:1423–1429

    Article  CAS  PubMed  Google Scholar 

  • Gupta S, Krasnoff SB, Renwick JAA et al (1993) Viridoxins A and B: novel toxins from the fungus Metarhizium flavoviride. J Org Chem 58:1062–1067

    Article  CAS  Google Scholar 

  • Harden BJ, Frueh DP (2017) Molecular cross-talk between nonribosomal peptide synthetase carrier proteins and unstructured linker regions. ChemBioChem 18:629–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashida J, Niitsuma M, Iwatsuki M et al (2010) Pyrenocine I, a new pyrenocine analog produced by Paecilomyces sp. FKI-3573. J Antibiot (Tokyo) 63:559–561

    Article  CAS  Google Scholar 

  • Hertweck C, Luzhetskyy A, Rebets Y et al (2007) Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat Prod Rep 24:162–190

    Article  CAS  PubMed  Google Scholar 

  • Hoffmeister D, Keller NP (2007) Natural products of filamentous fungi: enzymes, genes, and their regulation. Nat Prod Rep 24:393–416

    Article  CAS  PubMed  Google Scholar 

  • Horbach R, Graf A, Weihmann F et al (2009) Sfp-type 4′-phosphopantetheinyl transferase is indispensable for fungal pathogenicity. Plant Cell 21:3379–3396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsiao Y, Cheng MJ, Chang HS et al (2015) Six new metabolites produced by Colletotrichum aotearoa 09F0161, an endophytic fungus isolated from Bredia oldhamii. Nat Prod Res 30(3):1–8

    Google Scholar 

  • Hu Z, Wang J, Bi X et al (2014) Colletotrichumine A, a novel indole–pyrazine alkaloid with an unprecedented C16N3-type skeleton from cultures of Colletotrichum capsici. Tetrahedron Lett 55:6093–6095

    Article  CAS  Google Scholar 

  • Hunter TJ, O’Doherty GA (2002) Enantioselective syntheses of colletodiol, colletol, and grahamimycin A. Org Lett 4:4447–4450

    Article  CAS  PubMed  Google Scholar 

  • Hussain H, Ahmed I, Schulz B et al (2012a) Pyrenocines J-M: four new pyrenocines from the endophytic fungus, Phomopsis sp. Fitoterapia 83:523–526

    Article  CAS  PubMed  Google Scholar 

  • Hussain H, Krohn K, Ahmed I et al (2012b) Phomopsinones A-D: four new pyrenocines from endophytic fungus Phomopsis sp. Eur J Org Chem 2012(9):1783–1789

    Article  CAS  Google Scholar 

  • Hussain H, Root N, Jabeen F et al (2014) Seimatoric acid and colletonoic acid: two new compounds from the endophytic fungi, Seimatosporium sp. and Colletotrichum sp. Chin Chem Lett 25:1577–1579

    Article  CAS  Google Scholar 

  • Hyde KD, Cai L, Cannon PF et al (2009) Colletotrichum—names in current use. Fungal Divers Online Adv 39:147–182

    Google Scholar 

  • Ichihara A, Murakami K, Sakamura S (1987) Synthesis of pyrenocines A, B and pyrenochaetic acid A. Tetrahedron 43:5245–5250

    Article  CAS  Google Scholar 

  • Inácio ML, Silva GH, Teles HL et al (2006) Antifungal metabolites from Colletotrichum gloeosporioides, an endophytic fungus in Cryptocarya mandioccana Nees (Lauraceae). Biochem Syst Ecol 34:822–824

    Article  CAS  Google Scholar 

  • Inoue M, Mori N, Yamanaka H et al (1996a) Self-germination inhibitors from Colletotrichum fragariae. J Chem Ecol 22:2111–2122

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Takenaka H, Tsurushima T et al (1996b) Colletofragarones A1 and A2 novel germination self-inhibitors from the fungus Colletotrichum fragariae. Tetrahedron Lett 37:5731–5734

    Article  CAS  Google Scholar 

  • Jayawardena R (2016) Notes on currently accepted species of Colletotrichum. Mycosphere 7:1192–1260

    Article  Google Scholar 

  • Keck GE, Boden EP, Wiley MR (1989) Total synthesis of (+)-colletodiol: new methodology for the synthesis of macrolactones. J Org Chem 54:896–906

    Article  CAS  Google Scholar 

  • Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  CAS  PubMed  Google Scholar 

  • Keller NP, Turner G, Bennett JW (2005) Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol 3:937–947

    Article  CAS  PubMed  Google Scholar 

  • Kemda PN, Akone SH, Tontsa AT et al (2017) Colletotrin: a sesquiterpene lactone from the endophytic fungus Colletotrichum gloeosporioides associated with Trichilia monadelpha. Zeitschrift fur Naturforsch Sect B J Chem Sci 72:697–703

    Article  CAS  Google Scholar 

  • Kimura Y, Gohbara M, Suzuki A (1977) Assignment of 13C-NMR spectrum and biosynthesis of colletotrichin. Tetrahedron Lett 18:4515–4518

    Article  Google Scholar 

  • Kimura Y, Gohbara M, Suzuki A (1978) The biosynthesis of colletotrichins isolated from Colletotrichum nicotianae. Tetrahedron Lett 19:3115–3118

    Article  Google Scholar 

  • Kimura Y, Hamasaki T, Suzuki A (1979) 23rd Symp Chem. Terpenes, Essent Oils, Aromat pp 288–290

  • Kosuge Y, Suzuki A, Hirata S et al (1973) Structure of Colletochlorin from Colletotrichum nicotianae. Agric Biol Chem 37:455–456

    Article  CAS  Google Scholar 

  • Kosuge Y, Suzuki A, Tamura S (1974a) Structures of Colletochlorin C, Colletorin A and Colletorin C from Colletotrichum nicotianae. Agric Biol Chem 38:1265–1267

    Article  CAS  Google Scholar 

  • Kosuge Y, Suzuki A, Tamura S (1974b) Structure of Colletochlorin D from Colletotrichum nicotianae. Agric Biol Chem 38:1553–1554

    Article  CAS  Google Scholar 

  • Lax AR, Templeton GE, Meyer WL (1985) Isolation, purification, and biological activity of a self-inhibitor from conidia of Colletotrichum gloeosporioides. Phytopathology 75:386–390

    Article  CAS  Google Scholar 

  • Leite B, Nicholson RL (1992) Mycosporine-alanine: a self-inhibitor of germination from the conidial mucilage of Colletotrichum graminicola. Exp Mycol 16:76–86

    Article  CAS  Google Scholar 

  • Leite B, Nicholson RL (1993) A volatile self-inhibitor from Colletotrichum graminicola. Mycologia 85:945–951

    Article  CAS  Google Scholar 

  • Liu W, Ackermann L (2013) Ortho- and Para-Selective ruthenium-catalyzed C(sp2)–H oxygenations of phenol derivatives. Org Lett 15:3484–3486

    Article  CAS  PubMed  Google Scholar 

  • Liu HX, Tan HB, Chen YC et al (2017) Secondary metabolites from the Colletotrichum gloeosporioides A12, an endophytic fungus derived from Aquilaria sinensis. Nat Prod Res 6419:1–6

    Google Scholar 

  • Liu W, Chen S, Li J et al (2018) A new β-tetralonyl glucoside from the Santalum album derived endophytic fungus Colletotrichum. Nat Prod Res 6419:1–6

    Google Scholar 

  • Lu H, Zou WX, Meng JC et al (2000) New bioactive metabolites produced by Colletotrichum sp., an endophytic fungus in Artemisia annua. Plant Sci 151:67–73

    Article  CAS  Google Scholar 

  • Lu X, Chen G, Hua H et al (2012) Aromatic compounds from endophytic fungus Colletotrichum sp. L10 of Cephalotaxus hainanensis Li. Fitoterapia 83:737–741

    Article  CAS  PubMed  Google Scholar 

  • Lunnon MW, MacMillan J (1976) Fungal products. Part XVIII. 13C Nuclear Magnetic Resonance spectrum and biosynthesis of colletodiol. J Chem Soc Perkin Trans 1. https://doi.org/10.1039/p19760000184

    Article  Google Scholar 

  • MacMillan J, Pryce RJ (1968) The structure of colletodiol, a macrocyclic dilactone from Colletotrichum capsici. Tetrahedron Lett 9:5497–5500

    Article  Google Scholar 

  • MacMillan J, Simpson TJ (1973) Fungal products. Part V. The absolute stereochemistry of colletodiol and the structures of related metabolites of Colletotrichum capsici. J Chem Soc Perkin Trans 1. https://doi.org/10.1039/P19730001487

    Article  PubMed  Google Scholar 

  • Mancilla G, Jiménez-Teja D, Femenía-Ríos M et al (2009) Novel macrolide from wild strains of the phytopathogen fungus Colletotrichum acutatum. Nat Prod Commun 4:395–398

    CAS  PubMed  Google Scholar 

  • Maor R, Haskin S, Levi-Kedmi H et al (2004) In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 70:1852–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Núñez MA, López VE (2016) Nonribosomal peptides synthetases and their applications in industry. Sustain Chem Process 4:1–8

    Article  CAS  Google Scholar 

  • Masi M, Cimmino A, Boari A et al (2017a) Colletochlorins E and F, new phytotoxic tetrasubstituted pyran-2-one and dihydrobenzofuran, isolated from Colletotrichum higginsianum with potential herbicidal activity. J Agric Food Chem 65:1124–1130

    Article  CAS  PubMed  Google Scholar 

  • Masi M, Cimmino A, Boari A et al (2017b) Colletopyrandione, a new phytotoxic tetrasubstituted indolylidenepyran-2,4-dione, and colletochlorins G and H, new tetrasubstituted chroman- and isochroman-3,5-diols isolated from Colletotrichum higginsianum. Tetrahedron 73:6644–6650

    Article  CAS  Google Scholar 

  • Masi M, Zonno MC, Cimmino A et al (2017c) On the metabolites produced by Colletotrichum gloeosporioides a fungus proposed for the Ambrosia artemisiifolia biocontrol; spectroscopic data and absolute configuration assignment of colletochlorin A. Nat Prod Res 6419:1–11

    Google Scholar 

  • Matsushita M, Yoshida M, Zhang Y et al (1992) Synthesis of a germination self-inhibitor, (-)-gloeosporone, and related compounds and evaluation of their activities. Chem Pharm Bull 40:524–527

    Article  CAS  Google Scholar 

  • McNicholas C, Simpson TJ, Willett NJ (1996) Enantioselective synthesis of fusarentin methyl ethers: insecticidal metabolites of Fusarium larvarum. Tetrahedron Lett 37:8053–8056

    Article  CAS  Google Scholar 

  • Meyer WL, Lax AR, Templeton GE et al (1983) The structure of gloeosporone, a novel germination self-inhibitor from conidia of Collectotrichum gloeosporioides. Tetrahedron Lett 24:5059–5062

    Article  CAS  Google Scholar 

  • Meyer WL, Schweizer WB, Beck AK et al (1987) Revised structure of the fungal germination self-inhibitor gloeosporone. Helv Chim Acta 70:281–291

    Article  CAS  Google Scholar 

  • Miller BR, Drake EJ, Shi C et al (2016) Structures of a nonribosomal peptide synthetase module bound to MbtH-like proteins support a highly dynamic domain architecture. J Biol Chem 291:22559–22571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyazawa M, Kimura M, Yabe Y et al (2008) Use of solid phase microextraction (SPME) for profiling the volatile metabolites produced by Glomerella cingulata. J Oleo Sci 57:585–590

    Article  CAS  PubMed  Google Scholar 

  • Molnár I, Gibson DM, Krasnoff SB (2010) Secondary metabolites from entomopathogenic Hypocrealean fungi. Nat Prod Rep 27:1241–1275

    Article  CAS  PubMed  Google Scholar 

  • Mootz HD, Marahiel MA (1997) Biosynthetic systems for nonribosomal peptide antibiotic assembly. Curr Opin Chem Biol 1:543–551

    Article  CAS  PubMed  Google Scholar 

  • Mori K (2012) Pheromone synthesis. Part 253: synthesis of the racemates and enantiomers of triglycerides of male Drosophila fruit flies with special emphasis on the preparation of enantiomerically pure 1-monoglycerides. Tetrahedron 68:8441–8449

    Article  CAS  Google Scholar 

  • Munasinghe MVK, Kumar NS, Jayasinghe L et al (2017) Indole-3-acetic acid production by Colletotrichum siamense, an endophytic fungus from Piper nigrum leaves. J Biol Act Prod from Nat 7:475–479

    CAS  Google Scholar 

  • Münch S, Lingner U, Floss DS et al (2008) The hemibiotrophic lifestyle of Colletotrichum species. J Plant Physiol 165:41–51

    Article  CAS  PubMed  Google Scholar 

  • Nicholson RL, Moraes WBC (1980) Survival of Colletotrichum graminicola: importance of the spore matrix. Phytopathology 70:255–261

    Article  CAS  Google Scholar 

  • Nicholson TP, Rudd BA, Dawson M et al (2001) Design and utility of oligonucleotide gene probes for fungal polyketide synthases. Chem Biol 8:157–178

    Article  CAS  PubMed  Google Scholar 

  • O’Connell RJ, Thon MR, Hacquard S et al (2012) Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nat Genet 44:1060–1065

    Article  CAS  PubMed  Google Scholar 

  • Ohra J, Morita K, Tsujino Y et al (1995) Production of the phytotoxic metabolite, ferricrocin, by the fungus Colletotrichum gloeosporioides. Biosci Biotechnol Biochem 59:113–114

    Article  CAS  PubMed  Google Scholar 

  • Otsuka T, Muramatsu Y, Higaki T et al (1999) WF14861, a new cathepsins B and L inhibitor produced by Colletotrichum sp. I. Taxonomy, production, purification and structure elucidation. J Antibiot (Tokyo) 52:536–541

    Article  CAS  Google Scholar 

  • Perfect SE, Hughes HB, O’Connell RJ et al (1999) Colletotrichum: a model genus for studies on pathology and fungal–plant interactions. Fungal Genet Biol 27:186–198

    Article  CAS  PubMed  Google Scholar 

  • Pring RJ, Nash C, Zakaria M et al (1995) Infection process and host range of Colletotrichum capsici. Physiol Mol Plant Pathol 46:137–152

    Article  Google Scholar 

  • Ramakrishna K, Kaliappan KP (2015) An enantioselective total synthesis of Sch-725674. Org Biomol Chem 13:234–240

    Article  CAS  PubMed  Google Scholar 

  • Reimer JM, Aloise MN, Harrison PM et al (2016) Synthetic cycle of the initiation module of a formylating nonribosomal peptide synthetase. Nature 529:239–242

    Article  CAS  PubMed  Google Scholar 

  • Ren Y, Strobel GA, Graff JC et al (2008) Colutellin A, an immunosuppressive peptide from Colletotrichum dematium. Microbiology 154:1973–1979

    Article  CAS  PubMed  Google Scholar 

  • Robinson M, Riov J, Sharon A (1998) Indole-3-acetic acid biosynthesis in Colletotrichum gloeosporioides f. sp. aeschynomene. Appl Environ Microbiol 64:5030–5032

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roy AK, Bilgrami KS (1977) Cholesterol synthesis in Colletotrichum dematium (Pers. Ex. Fr.) Grove. Curr Sci 46:203

    CAS  Google Scholar 

  • Sawada T, Nakada M (2013) Enantioselective total synthesis of (+)-colletoic acid via catalytic asymmetric intramolecular cyclopropanation of an α-diazo-β-keto diphenylphosphine oxide. Org Lett 15:1004–1007

    Article  CAS  PubMed  Google Scholar 

  • Schümann J, Hertweck C (2006) Advances in cloning, functional analysis and heterologous expression of fungal polyketide synthase genes. J Biotechnol 124:690–703

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer D, Finking R, Marahiel MA (2003) Nonribosomal peptides: from genes to products. Nat Prod Rep 20:275–287

    Article  CAS  PubMed  Google Scholar 

  • Shen B (2003) Polyketide biosynthesis beyond the type I, II and III polyketide synthase paradigms. Curr Opin Chem Biol 7:285–295

    Article  CAS  PubMed  Google Scholar 

  • Shimizu S, Sakurai I, Yamamoto Y (1983) Isolation and structure of macommelins, novel metabolites of Macrophoma commelinae. Chem Pharm Bull (Tokyo) 31:3781–3784

    Article  CAS  Google Scholar 

  • Shu S, Zhao X, Wang W et al (2014) Identification of a novel endophytic fungus from Huperzia serrata which produces huperzine A. World J Microbiol Biotechnol 30:3101–3109

    Article  CAS  PubMed  Google Scholar 

  • Sieber SA, Marahiel MA (2005) Molecular mechanisms underlying nonribosomal peptide synthesis: approaches to new antibiotics. Chem Rev 105:715–738

    Article  CAS  Google Scholar 

  • Siewers V, Viaud M, Jimenez-Teja D et al (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18:602–6012

    Article  CAS  PubMed  Google Scholar 

  • Smith S, Tsai SC (2007) The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat Prod Rep 24:1041–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JH, Lee C, Lee D, Kim S, Bang S, Shin MS, Lee J, Kang KS, Shim SH (2018) Neuroprotective Compound from an Endophytic Fungus, Colletotrichum sp. JS-0367. J Nat Prod 81:1411–1416

    Article  CAS  PubMed  Google Scholar 

  • Sørensen JL, Nielsen KF, Sondergaard TE (2012) Redirection of pigment biosynthesis to isocoumarins in Fusarium. Fungal Genet Biol 49:613–618

    Article  CAS  PubMed  Google Scholar 

  • Staunton J, Weissman KJ (2001) Polyketide biosynthesis: a millennium review. Nat Prod Rep 18:380–416

    Article  CAS  PubMed  Google Scholar 

  • Stoessl A, Stothers JB (1986) Colletruncoic acid methyl ester, a unique meroterpenoid from Colletotrichum truncatum. Zeitschrift für Naturforsch C 41:677–680

    Article  CAS  Google Scholar 

  • Suzuki A, Gohbara M, Kosuge Y et al (1976) Structures of Colletotrichin and Colletotrichin B, phytotoxic metabolites from Colletotrichum nicotianae. Agric Biol Chem 40:2505–2506

    CAS  Google Scholar 

  • Takahashi C, Takai Y, Kimura Y et al (1995) Cytotoxic metabolites from a fungal adherent of a marine alga. Phytochemistry 38:155–158

    Article  CAS  PubMed  Google Scholar 

  • Takaya Y, Furukawa T, Miura S et al (2007) Antioxidant constituents in distillation residue of Awamori spirits. J Agric Food Chem 55:75–79

    Article  CAS  PubMed  Google Scholar 

  • Tianpanich K, Prachya S, Wiyakrutta S et al (2011) Radical scavenging and antioxidant activities of isocoumarins and a phthalide from the endophytic fungus Colletotrichum sp. J Nat Prod 74:79–81

    Article  CAS  PubMed  Google Scholar 

  • Trigos A, Reyna S, Gutierrez ML et al (1997) Diketopiperazines from cultures of the fungus Colletotrichum gloesporoides. Nat Prod Lett 11:13–16

    Article  CAS  Google Scholar 

  • Tsurushima T, Ueno T, Fukami H et al (1995) Germination self-inhibitors from Colletotrichum gloeosporioides f. sp. jussiaea. Mol Plant-Microbe Interact 8:652–657

    Article  CAS  Google Scholar 

  • Wang H, Fewer DP, Holm L et al (2014) Atlas of nonribosomal peptide and polyketide biosynthetic pathways reveals common occurrence of nonmodular enzymes. Proc Natl Acad Sci U S A 111:9259–9264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang F, Zhu H, Ma H et al (2016a) Citrinal B, a new secondary metabolite from endophytic fungus Colletotrichum capsici and structure revision of citrinal A. Tetrahedron Lett 57:4250–4253

    Article  CAS  Google Scholar 

  • Wang WX, Kusari S, Laatsch H et al (2016b) Antibacterial azaphilones from an endophytic fungus, Colletotrichum sp. BS4. J Nat Prod 79:704–710

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Ma H, Hu Z et al (2017) Secondary metabolites from Colletotrichum capsici, an endophytic fungus derived from Siegesbeckia pubescens Makino. Nat Prod Res 31:1849–1854

    Article  CAS  PubMed  Google Scholar 

  • Wei B, Yang ZD, Chen XW et al (2016) Colletotrilactam A-D, novel lactams from Colletotrichum gloeosporioides GT-7, a fungal endophyte of Uncaria rhynchophylla. Fitoterapia 113:158–163

    Article  CAS  PubMed  Google Scholar 

  • Wharton PS, Julian AM, O’Connell RJ (2001) Ultrastructure of the infection of Sorghum bicolor by Colletotrichum sublineolum. Phytopathology 91:149–158

    Article  CAS  PubMed  Google Scholar 

  • Wicklow DT, Jordan AM, Gloer JB (2009) Antifungal metabolites (monorden, monocillins I, II, III) from Colletotrichum graminicola, a systemic vascular pathogen of maize. Mycol Res 113:1433–1442

    Article  CAS  PubMed  Google Scholar 

  • Xi J, Yang Z, Xu J et al (2012) Study on the metabolites of endophytic fungus Colletotrichum sp. from Elaeagnus umbellata Thunb. Northwest Pharm J 27:523–525

    CAS  Google Scholar 

  • Yamal Y, dan Adrian Agusta P (2009) Methyleugenol, a major metabolite on culture of endophytic fungi isolated from pandan wangi plant. Indones J Pharm 20:185–189

    Google Scholar 

  • Yang Z (2013) 3-Hydroxybutan-2-yl octadeca-9,12-dienoate, its preparation method and application in preparing antibacterial drugs. Faming Zhuanli Shenqing patent

  • Yang ZJ, Yang T, Luo MY et al (2013) A new sesquiterpenoid from fungus Colletotrichum sp. and its cytotoxicity. Yaoxue Xuebao 48:891–895

    CAS  Google Scholar 

  • Yang Z, Bao L, Yin Y et al (2014) Pyrenocines N-O: two novel pyrones from Colletotrichum sp. HCCB03289. J Antibiot (Tokyo) 67:791–793

    Article  CAS  Google Scholar 

  • Yu JH, Keller N (2005) Regulation of secondary metabolism in filamentous fungi. Ann Rev Phytopathol 43:437–458

    Article  CAS  Google Scholar 

  • Zhang W, Draeger S, Schulz B et al (2009) Ring B aromatic steroids from an endophytic fungus, Colletotrichum sp. Nat Prod Commun 4:1449–1454

    CAS  PubMed  Google Scholar 

  • Zhang Q, Wei X, Wang J (2012) Phillyrin produced by Colletotrichum gloeosporioides, an endophytic fungus isolated from Forsythia suspensa. Fitoterapia 83:1500–1505

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Wang W, Zhang X et al (2015) De Novo RNA sequencing and transcriptome analysis of Colletotrichum gloeosporioides ES026 reveal genes related to biosynthesis of huperzine A. PLoS ONE 10:1–17

    Google Scholar 

  • Zhi-jun Y, Yu Y, Zhi-quiang W et al (2012) Cytotoxic metabolites of endophytic fungus Colletotrichum sp. from Aristolochia spp. Nat Prod Res Dev 24:329–332

    Google Scholar 

  • Zhou SL, Zhou SL, Wang MX et al (2011) Two compounds from the endophytic Colletotrichum sp. of Ginkgo biloba. Nat Prod Commun 6:1131–1132

    CAS  PubMed  Google Scholar 

  • Zou WX, Meng JC, Lu H et al (2000) Metabolites of Colletotrichum gloeosporioides, an endophytic fungus in Artemisia mongolica. J Nat Prod 63:1529–1530

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isidro G. Collado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moraga, J., Gomes, W., Pinedo, C. et al. The current status on secondary metabolites produced by plant pathogenic Colletotrichum species. Phytochem Rev 18, 215–239 (2019). https://doi.org/10.1007/s11101-018-9590-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11101-018-9590-0

Keywords

Navigation