Skip to main content
Log in

Use of in Vitro Critical Inhibitory Concentration, a Novel Approach to Predict in Vivo Synergistic Bactericidal Effect of Combined Amikacin and Piperacillin Against Pseudomonas aeruginosa in a Systemic Rat Infection Model

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

This study was undertaken to explore the use of in vitro critical inhibitory concentration (CIC) as a surrogate marker relating the pharmacokinetic (PK) parameters to in vivo bactericidal synergistic effect [pharmacodynamic (PD)] of amikacin + piperacillin combination against Pseudomonas aeruginosa in a systemic rat infection model.

Methods

The in vitro antibacterial activities of amikacin and piperacillin, alone and in combinations at various ratios of the concentrations, were tested against a standard [5 × 105 colony-forming units (CFU)/ml] and a large (1.5 × 108 CFU/ml) inoculum of P. aeruginosa ATCC 9027 using a modified survival-time method. The CIC of each individual antibiotic for the different combinations was determined using a cup-plate method. In vivo studies were performed on Sprague-Dawley rats using a systemic model of infection with P. aeruginosa ATCC 9027. PK profiles and in vivo killing effects of the combination at different dosing ratios were studied.

Results

An inoculum effect was observed with the antibiotics studied. Synergy was seen against both the inocula at the following concentration ratios: 70% C ami + 30% C pip and 75% C ami + 25% C pip, where C ami and C pip are the concentrations of amikacin and piperacillin to produce a 1000-fold decrease in bacterial population over 5 h, respectively. The CIC values determined corroborated with the order of in vitro bacterial killing observed for the antibiotic combinations. The dosing ratio of 12.6 mg/kg amikacin + 36 mg/kg piperacillin (a 70:30 ratio of the individual doses) exhibited the greatest killing in vivo when compared to the other ratios. The PK–PD relationships were described by simple, linear regression equations using the area under the in vivo killing curve as a PD marker and the AUCICami/CICami + AUCICpip/CICpip, AUCami/CICami + AUCpip/CICpip, Cmax,ami/CICami + Cmax,pip/CICpip, and AUCICami/MICami + AUCICpip/MICpip as PK markers for the amikacin + piperacillin combination.

Conclusion

The combination of amikacin and piperacillin exhibited synergistic killing effect on P. aeruginosa that could be modeled using CIC as a surrogate marker relating the PK parameters to in vivo bactericidal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. M. Eliopoulos R. C. Moellering (1996) Antimicrobial combinations V. Lorian (Eds) Antibiotics in Laboratory Medicine Williams & Wilkins Baltimore

    Google Scholar 

  2. M. Paul K. Soares-Weiser L. Leibovici (2003) ArticleTitleBeta lactam monotherapy versus beta lactam–aminoglycoside combination therapy for fever with neutropenia: systematic review and meta-analysis BMJ 326 1111 Occurrence Handle10.1136/bmj.326.7399.1111 Occurrence Handle1:CAS:528:DC%2BD3sXltFGgu7w%3D Occurrence Handle12763980

    Article  CAS  PubMed  Google Scholar 

  3. J. M. Hyatt P. S. McKinnon G. S. Zimmer J. J. Schentag (1995) ArticleTitleThe importance of pharmacokinetic/pharmacodynamic surrogate markers to outcome. Focus on antibacterial agents Clin. Pharmacokinet. 28 143–160 Occurrence Handle1:CAS:528:DyaK2MXktVejtbY%3D Occurrence Handle7736689 Occurrence Handle10.2165/00003088-199528020-00005

    Article  CAS  PubMed  Google Scholar 

  4. M. R. Jacobs (2003) ArticleTitleHow can we predict bacterial eradication? Int. J. Infect. Dis. 7 IssueID(Suppl 1) S13–S20 Occurrence Handle10.1016/S1201-9712(03)90066-X Occurrence Handle12839703

    Article  PubMed  Google Scholar 

  5. N. Frimodt-Moller (2002) ArticleTitleHow predictive is PK/PD for antibacterial agents? Int. J. Antimicrob. Agents 19 333–339 Occurrence Handle10.1016/S0924-8579(02)00029-8 Occurrence Handle1:CAS:528:DC%2BD38XjtVeisLg%3D Occurrence Handle11978504

    Article  CAS  PubMed  Google Scholar 

  6. F. Soriano P. Garcia-Corbeira C. Ponte R. Fernandez-Roblas I. Gadea (1996) ArticleTitleCorrelation of pharmacodynamic parameters of five beta-lactam antibiotics with therapeutic efficacies in an animal model Antimicrob. Agents Chemother. 40 2686–2690 Occurrence Handle1:CAS:528:DyaK28Xnt1Cmtbs%3D Occurrence Handle9124823

    CAS  PubMed  Google Scholar 

  7. D. Andes W. A. Craig (2002) ArticleTitlePharmacodynamics of the new fluoroquinolone gatifloxacin in murine thigh and lung infection models Antimicrob. Agents Chemother. 46 1665–1670 Occurrence Handle10.1128/AAC.46.6.1665-1670.2002 Occurrence Handle1:CAS:528:DC%2BD38XktFCnu7Y%3D Occurrence Handle12019073

    Article  CAS  PubMed  Google Scholar 

  8. T. Dalla Costa H. Derendorf (1996) ArticleTitleAUIC—a general target for the optimization of dosing regimens of antibiotics? Ann. Pharmacother. 30 1024–1028 Occurrence Handle1:STN:280:DyaK2s%2FjtV2guw%3D%3D Occurrence Handle8876867

    CAS  PubMed  Google Scholar 

  9. P. Liu K. H. Rand B. Obermann H. Derendorf (2005) ArticleTitlePharmacokinetic–pharmacodynamic modelling of antibacterial activity of cefpodoxime and cefixime in in vitro kinetic models Int. J. Antimicrob. Agents 25 120–129 Occurrence Handle10.1016/j.ijantimicag.2004.09.012 Occurrence Handle15664481 Occurrence Handle1:CAS:528:DC%2BD2MXms1Oisw%3D%3D

    Article  PubMed  CAS  Google Scholar 

  10. T. Koga T. Abe H. Inoue T. Takenouchi A. Kitayama T. Yoshida N. Masuda C. Sugihara M. Kakuta M. Nakagawa T. Shibayama Y. Matsushita T. Hirota S. Ohya Y. Utsui T. Fukuoka S. Kuwahara (2005) ArticleTitle In vitro and in vivo antibacterial activities of CS-023 (RO4908463), a novel parenteral carbapenem Antimicrob. Agents Chemother. 49 3239–3250 Occurrence Handle10.1128/AAC.49.8.3239-3250.2005 Occurrence Handle1:CAS:528:DC%2BD2MXntFChtLY%3D Occurrence Handle16048932

    Article  CAS  PubMed  Google Scholar 

  11. C. Pichardo J. M. Rodriguez-Martinez M. E. Pachon-Ibanez C. Conejo J. Ibanez-Martinez L. Martinez-Martinez J. Pachon A. Pascual (2005) ArticleTitleEfficacy of cefepime and imipenem in experimental murine pneumonia caused by porin-deficient Klebsiella pneumoniae producing CMY-2 beta-Lactamase Antimicrob. Agents Chemother. 49 3311–3316 Occurrence Handle10.1128/AAC.49.8.3311-3316.2005 Occurrence Handle1:CAS:528:DC%2BD2MXntFChtbk%3D Occurrence Handle16048941

    Article  CAS  PubMed  Google Scholar 

  12. M. D. Obritsch D. N. Fish R. Maclaren R. Jung (2005) ArticleTitleNosocomial infections due to multidrug-resistant Pseudomonas aeruginosa: epidemiology and treatment options Pharmacotherapy 25 1353–1364 Occurrence Handle10.1592/phco.2005.25.10.1353 Occurrence Handle1:CAS:528:DC%2BD2MXhtFGitbzE Occurrence Handle16185180

    Article  CAS  PubMed  Google Scholar 

  13. J. P. Quinn (2003) ArticleTitle Pseudomonas aeruginosa infections in the intensive care unit Semin. Respir. Crit. Care Med. 24 61–68 Occurrence Handle10.1055/s-2003-37917 Occurrence Handle16088525

    Article  PubMed  Google Scholar 

  14. C. F. Amábile-Cuevas (1996) Antibiotic Resistance: From Molecular Basics to Therapeutic Options. Medical Intelligence Unit Chapman Hall New York

    Google Scholar 

  15. F. Pea P. Viale M. Furlanut (2005) ArticleTitleAntimicrobial therapy in critically ill patients: a review of pathophysiological conditions responsible for altered disposition and pharmacokinetic variability Clin. Pharmacokinet. 44 1009–1034 Occurrence Handle10.2165/00003088-200544100-00002 Occurrence Handle1:CAS:528:DC%2BD2MXhtF2lu77K Occurrence Handle16176116

    Article  CAS  PubMed  Google Scholar 

  16. K. F. Bodmann (2005) ArticleTitleCurrent guidelines for the treatment of severe pneumonia and sepsis. Chemotherapy 51 227–233 Occurrence Handle10.1159/000087452 Occurrence Handle1:CAS:528:DC%2BD2MXoslKgsLs%3D Occurrence Handle16103664

    Article  CAS  PubMed  Google Scholar 

  17. A. W. Hopefl (1991) ArticleTitleOverview of synergy with reference to double beta-lactam combinations DICP 25 972–977 Occurrence Handle1:CAS:528:DyaK3MXms12ksr4%3D Occurrence Handle1949976

    CAS  PubMed  Google Scholar 

  18. S. F. Yeo D. M. Livermore (1994) ArticleTitleEffect of inoculum size on the in-vitro susceptibility to beta-lactam antibiotics of Moraxella catarrhalis isolates of different beta-lactamase types J. Med. Microbiol. 40 252–255 Occurrence Handle1:CAS:528:DyaK2cXlsFeisbs%3D Occurrence Handle8151675 Occurrence Handle10.1099/00222615-40-4-252

    Article  CAS  PubMed  Google Scholar 

  19. S. Mizunaga T. Kamiyama Y. Fukuda M. Takahata J. Mitsuyama (2005) ArticleTitleInfluence of inoculum size of Staphylococcus aureus and Pseudomonas aeruginosa on in vitro activities and in vivo efficacy of fluoroquinolones and carbapenems J. Antimicrob. Chemother. 56 91–96 Occurrence Handle10.1093/jac/dki163 Occurrence Handle1:CAS:528:DC%2BD2MXmsV2itL4%3D Occurrence Handle15890721

    Article  CAS  PubMed  Google Scholar 

  20. D. Tarrago L. Aguilar M. J. Gimenez A. Fenoll J. Casal (2004) ArticleTitleEffects of amoxicillin subinhibitory concentrations on the cross-protection developed by pneumococcal antibodies in mouse sepsis caused by an amoxicillin-resistant serotype 6B Streptococcus pneumoniae strain Antimicrob. Agents Chemother. 48 4144–4147 Occurrence Handle10.1128/AAC.48.11.4144-4147.2004 Occurrence Handle1:CAS:528:DC%2BD2cXpvVyks74%3D Occurrence Handle15504833

    Article  CAS  PubMed  Google Scholar 

  21. J. G. Zhi C. H. Nightingale R. Quintiliani (1988) ArticleTitleMicrobial pharmacodynamics of piperacillin in neutropenic mice of systematic infection due to Pseudomonas aeruginosa. J. Pharmacokinet. Biopharm. 16 355–375 Occurrence Handle10.1007/BF01062551 Occurrence Handle1:CAS:528:DyaL1cXmtVCntLk%3D Occurrence Handle3193364

    Article  CAS  PubMed  Google Scholar 

  22. M. Klassen S. C. Edberg (1996) Measurement of antibiotics in human body fluids: Techniques and significance V. Lorian (Eds) Antibiotics in Laboratory Medicine Williams & Wilkins Baltimore

    Google Scholar 

  23. NCCLS. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard. National Committee for Clinical Laboratory Standards document M7-A3 (3rd ed.), National Committee for Clinical Laboratory Standards, 1993.

  24. F. Soriano (1992) ArticleTitleOptimal dosage of beta-lactam antibiotics: time above the MIC and inoculum effect J. Antimicrob. Chemother. 30 566–569 Occurrence Handle1:STN:280:DyaK3s7lsV2gsA%3D%3D Occurrence Handle1493975

    CAS  PubMed  Google Scholar 

  25. I. Brook (1989) ArticleTitleInoculum effect Rev. Infect. Dis. 11 361–368 Occurrence Handle1:STN:280:DyaL1MzhslWhtQ%3D%3D Occurrence Handle2664999

    CAS  PubMed  Google Scholar 

  26. L. S. Gonzalez Suffix3rd J. P. Spencer (1998) ArticleTitleAminoglycosides: a practical review Am. Fam. Phys. 58 1811–1820

    Google Scholar 

  27. A. A. Gerceker B. Gurler (1995) ArticleTitle In-vitro activities of various antibiotics, alone and in combination with amikacin against Pseudomonas aeruginosa J. Antimicrob. Chemother. 36 707–711 Occurrence Handle1:CAS:528:DyaK2MXpsVGgtbs%3D Occurrence Handle8591946

    CAS  PubMed  Google Scholar 

  28. R. B. Ghooi S. M. Thatte (1995) ArticleTitleInhibition of cell wall synthesis—is this the mechanism of action of penicillins? Med. Hypotheses 44 127–131 Occurrence Handle10.1016/0306-9877(95)90085-3 Occurrence Handle1:CAS:528:DyaK2MXlslChtro%3D Occurrence Handle7596307

    Article  CAS  PubMed  Google Scholar 

  29. K. Totsuka M. Shiseki K. Kikuchi Y. Matsui (1999) ArticleTitleCombined effects of vancomycin and imipenem against methicillin-resistant Staphylococcus aureus (MRSA) in vitro and in vivo J. Antimicrob. Chemother. 44 455–460 Occurrence Handle10.1093/jac/44.4.455 Occurrence Handle1:CAS:528:DyaK1MXntV2lurY%3D Occurrence Handle10588305

    Article  CAS  PubMed  Google Scholar 

  30. J. C. Garcia-Gonzalez R. Mendez J. Martin-Villacorta (1998) ArticleTitleDetermination of piperacillin and mezlocillin in human serum and urine by high-performance liquid chromatography after derivatisation with 1,2,4-triazole J. Chromatogr. A. 812 213–220 Occurrence Handle10.1016/S0021-9673(98)00389-6 Occurrence Handle1:STN:280:DyaK1czls1ehtw%3D%3D Occurrence Handle9691320

    Article  CAS  PubMed  Google Scholar 

  31. L. Soltes (1999) ArticleTitleAminoglycoside antibiotics—two decades of their HPLC bioanalysis Biomed. Chromatogr. 13 3–10 Occurrence Handle10.1002/(SICI)1099-0801(199902)13:1<3::AID-BMC811>3.0.CO;2-T Occurrence Handle1:CAS:528:DyaK1MXhtFOrtrc%3D Occurrence Handle10191936

    Article  CAS  PubMed  Google Scholar 

  32. L. Estes (1998) ArticleTitleReview of pharmacokinetics and pharmacodynamics of antimicrobial agents Mayo Clin. Proc. 73 1114–1122 Occurrence Handle1:CAS:528:DyaK1cXns1emt78%3D Occurrence Handle9818049 Occurrence Handle10.4065/73.11.1114

    Article  CAS  PubMed  Google Scholar 

  33. R. M. Fielding R. O. Lewis L. Moon-McDermott (1998) ArticleTitleAltered tissue distribution and elimination of amikacin encapsulated in unilamellar, low-clearance liposomes (MiKasome) Pharm. Res. 15 1775–1781 Occurrence Handle10.1023/A:1011925132473 Occurrence Handle1:CAS:528:DyaK1cXnsFSns7Y%3D Occurrence Handle9834002

    Article  CAS  PubMed  Google Scholar 

  34. J. Spicak J. Martinek F. Zavada J. Moravek V. Melenovsky (1999) ArticleTitlePenetration of antibiotics into the pancreas in rats: an effect of acute necrotizing pancreatitis Scand. J. Gastroenterol. 34 92–97 Occurrence Handle10.1080/00365529950172899 Occurrence Handle1:CAS:528:DyaK1MXhtleitLg%3D Occurrence Handle10048739

    Article  CAS  PubMed  Google Scholar 

  35. O. Mimoz N. Elhelali S. Leotard A. Jacolot F. Laurent K. Samii O. Petitjean P. Nordmann (1999) ArticleTitleTreatment of experimental pneumonia in rats caused by a PER-1 extended-spectrum beta-lactamase-producing strain of Pseudomonas aeruginosa J. Antimicrob. Chemother. 44 91–97 Occurrence Handle10.1093/jac/44.1.91 Occurrence Handle1:CAS:528:DyaK1MXltVyit7w%3D Occurrence Handle10459815

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported by the National University of Singapore Academic Research Fund (R148-000-020-112 and R148-000-057-112).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eli Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, E., Zhou, S., Srikumar, S. et al. Use of in Vitro Critical Inhibitory Concentration, a Novel Approach to Predict in Vivo Synergistic Bactericidal Effect of Combined Amikacin and Piperacillin Against Pseudomonas aeruginosa in a Systemic Rat Infection Model. Pharm Res 23, 729–741 (2006). https://doi.org/10.1007/s11095-006-9783-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9783-x

Key Words

Navigation