Skip to main content
Log in

Investigation of quasi-periodic response of a buckled beam under harmonic base excitation with an “unexplained” sideband structure

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The aim of this paper is to investigate quasi-periodic response of a fixed–fixed buckled beam experimentally studied in detail by Kreider and Nayfeh (Nonlinear Dyn 15(2):155–177, 1998. https://doi.org/10.1023/A:1008231012968) with an “unexplained” sideband structure. After a description of the equation of motion of the buckled beam with quadratic and cubic nonlinearities, it is shown that the proposed approach, the incremental harmonic balance (IHB) method with two time scales, can be used to find the quasi-periodic response of the buckled beam with the “unexplained” sideband structure and its understanding is revealed. The traditional IHB method with a single time scale is first used to automatically track periodic and period-doubling solutions of nonlinear responses of the buckled beam, and stability and bifurcations of periodic solutions are investigated using the Floquet theory. In the case of 1:1 internal resonance between the first two modes of the buckled beam, it is found that anti-symmetrical modes cannot be excited due to small excitation amplitudes. However, the anti-symmetrical modes are excited via period-doubling bifurcation with an increased excitation amplitude. By continuously increasing the excitation amplitude, Hopf bifurcation occurs, which leads to quasi-periodic response whose spectrum contains uniformly spaced sidebands around integer multiples of a half of the excitation frequency, where the uniformly spaced sidebands were called an “unexplained” sideband structure in Kreider and Nayfeh (1998). The results obtained from the IHB method with two time scales are shown to well correlate with the experimental results in Kreider and Nayfeh (1998). Moreover, results obtained from the IHB method with two time scales are in excellent agreement with those from numerical integration using the fourth-order Runge–Kutta method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Tseng, W.Y., Dugundji, J.: Nonlinear vibrations of a buckled beam under harmonic excitation. J. Appl. Mech. 38(2), 467 (1971). https://doi.org/10.1115/1.3408799

    Article  MATH  Google Scholar 

  2. Afaneh, A.A., Ibrahim, R.A.: Nonlinear response of an initially buckled beam with 1:1 internal resonance to sinusoidal excitation. Nonlinear Dyn. 4(6), 547–571 (1993). https://doi.org/10.1007/bf00162232

    Article  Google Scholar 

  3. Lestari, W., Hanagud, S.: Nonlinear vibration of buckled beams: some exact solutions. Int. J. Solids Struct. 38(26–27), 4741–4757 (2001). https://doi.org/10.1016/s0020-7683(00)00300-0

    Article  MATH  Google Scholar 

  4. Shojaei, M.F., Ansari, R., Mohammadi, V., Rouhi, H.: Nonlinear forced vibration analysis of postbuckled beams. Arch. Appl. Mech. 84(3), 421–440 (2013). https://doi.org/10.1007/s00419-013-0809-7

    Article  MATH  Google Scholar 

  5. Xiong, L.Y., Zhang, G.C., Ding, H., Chen, L.Q.: Nonlinear forced vibration of a viscoelastic buckled beam with 2:1 internal resonance. Math. Prob. Eng. 2014, 1–14 (2014). https://doi.org/10.1155/2014/906324

    Article  MathSciNet  MATH  Google Scholar 

  6. Mohamed, N., Eltaher, M.A., Mohamed, S.A., Seddek, L.F.: Numerical analysis of nonlinear free and forced vibrations of buckled curved beams resting on nonlinear elastic foundations. Int. J. Non Linear Mech. 101, 157–173 (2018). https://doi.org/10.1016/j.ijnonlinmec.2018.02.014

    Article  Google Scholar 

  7. Li, H.T., Qin, W.Y., Zu, J., Yang, Z.: Modeling and experimental validation of a buckled compressive-mode piezoelectric energy harvester. Nonlinear Dyn. 92(4), 1761–1780 (2018). https://doi.org/10.1007/s11071-018-4160-y

    Article  Google Scholar 

  8. Gao, K., Gao, W., Wu, D., Song, C.: Nonlinear dynamic stability analysis of Euler–Bernoulli beam-columns with damping effects under thermal environment. Nonlinear Dyn. 90(4), 2423–2444 (2017). https://doi.org/10.1007/s11071-017-3811-8

    Article  Google Scholar 

  9. Ansari, R., Faraji Oskouie, M., Rouhi, H.: Studying linear and nonlinear vibrations of fractional viscoelastic timoshenko micro-/nano-beams using the strain gradient theory. Nonlinear Dyn. 87(1), 695–711 (2017). https://doi.org/10.1007/s11071-016-3069-6

    Article  MATH  Google Scholar 

  10. Jiang, W.A., Chen, L.Q., Ding, H.: Internal resonance in axially loaded beam energy harvesters with an oscillator to enhance the bandwidth. Nonlinear Dyn. 85(4), 2507–2520 (2016). https://doi.org/10.1007/s11071-016-2841-y

    Article  Google Scholar 

  11. Emam, S.A., Abdalla, M.M.: Subharmonic parametric resonance of simply supported buckled beams. Nonlinear Dyn. 79(2), 1443–1456 (2015). https://doi.org/10.1007/s11071-014-1752-z

    Article  Google Scholar 

  12. Li, X.B., Li, L., Hu, Y.J., Ding, Z., Deng, W.M.: Bending, buckling and vibration of axially functionally graded beams based on nonlocal strain gradient theory. Compos. Struct. 165, 250–265 (2017). https://doi.org/10.1016/j.compstruct.2017.01.032

    Article  Google Scholar 

  13. Kreider, W., Nayfeh, A.H.: Experimental investigation of single-mode responses in a fixed–fixed buckled beam. Nonlinear Dyn. 15(2), 155–177 (1998). https://doi.org/10.1023/A:1008231012968

    Article  MATH  Google Scholar 

  14. Emam, S.A., Nayfeh, A.H.: On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dyn. 35(1), 1–17 (2004). https://doi.org/10.1023/B:NODY.0000017466.71383.d5

    Article  MATH  Google Scholar 

  15. Emam, S.A., Nayfeh, A.H.: Nonlinear responses of buckled beams to subharmonic-resonance excitations. Nonlinear Dyn. 35(2), 105–122 (2004). https://doi.org/10.1023/B:NODY.0000020878.34039.d4

    Article  MATH  Google Scholar 

  16. Yang, X.D., Chen, L.Q.: Bifurcation and chaos of an axially accelerating viscoelastic beam. Chaos, Solitons Fractals 23(1), 249–258 (2005). https://doi.org/10.1016/j.chaos.2004.04.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Wang, L.: A further study on the non-linear dynamics of simply supported pipes conveying pulsating fluid. Int. J. Non Linear Mech. 44(1), 115–121 (2009). https://doi.org/10.1016/j.ijnonlinmec.2008.08.010

    Article  Google Scholar 

  18. Wang, X., Vaidyanathan, S., Volos, C., Pham, V.T., Kapitaniak, T.: Dynamics, circuit realization, control and synchronization of a hyperchaotic hyperjerk system with coexisting attractors. Nonlinear Dyn. 89(3), 1673–1687 (2017). https://doi.org/10.1007/s11071-017-3542-x

    Article  MathSciNet  MATH  Google Scholar 

  19. Pourkiaee, S.M., Khadem, S.E., Shahgholi, M., Bab, S.: Nonlinear modal interactions and bifurcations of a piezoelectric nanoresonator with three-to-one internal resonances incorporating surface effects and van der waals dissipation forces. Nonlinear Dyn. 88(3), 1785–1816 (2017). https://doi.org/10.1007/s11071-017-3345-0

    Article  Google Scholar 

  20. Younis, M.I.: Multi-mode excitation of a clamped–clamped microbeam resonator. Nonlinear Dyn. 80(3), 1531–1541 (2015). https://doi.org/10.1007/s11071-015-1960-1

    Article  MathSciNet  Google Scholar 

  21. Kim, Y.B., Noah, S.T.: Quasi-periodic response and stability analysis for a non-linear jeffcott rotor. J. Sound Vib. 190(2), 239–253 (1996). https://doi.org/10.1006/jsvi.1996.0059

    Article  Google Scholar 

  22. Zhou, B., Thouverez, F., Lenoir, D.: A variable-coefficient harmonic balance method for the prediction of quasi-periodic response in nonlinear systems. Mech. Syst. Signal Process. 64–65, 233–244 (2015). https://doi.org/10.1016/j.ymssp.2015.04.022

    Article  Google Scholar 

  23. Lau, S.L., Cheung, Y.K., Wu, S.Y.: Incremental harmonic balance method with multiple time scales for aperiodic vibration of nonlinear systems. J. Appl. Mech. 50(4a), 871 (1983). https://doi.org/10.1115/1.3167160

    Article  MathSciNet  MATH  Google Scholar 

  24. Huang, J.L., Zhu, W.D.: An incremental harmonic balance method with two timescales for quasiperiodic motion of nonlinear systems whose spectrum contains uniformly spaced sideband frequencies. Nonlinear Dyn. 90(2), 1015–1033 (2017). https://doi.org/10.1007/s11071-017-3708-6

    Article  Google Scholar 

  25. Huang, J.L., Zhu, W.D.: A new incremental harmonic balance method with two time scales for quasi-periodic motions of an axially moving beam with internal resonance under single-tone external excitation. J. Vib. Acoust. 139(2), 021010 (2017). https://doi.org/10.1115/1.4035135

    Article  Google Scholar 

  26. Friedmann, P., Hammond, C.E., Woo, T.H.: Efficient numerical treatment of periodic systems with application to stability problems. Int. J. Numer. Methods Eng. 11(7), 1117–1136 (1977). https://doi.org/10.1002/nme.1620110708

    Article  MathSciNet  MATH  Google Scholar 

  27. Huang, J.L., Su, R.K.L., Chen, S.H.: Precise Hsu’s method for analyzing the stability of periodic solutions of multi-degrees-of-freedom systems with cubic nonlinearity. Comput. Struct. 87(23), 1624–1630 (2009). https://doi.org/10.1016/j.compstruc.2009.09.005

    Article  Google Scholar 

  28. Andrianov, I.V., Awrejcewicz, J.: On the improved Kirchhoff equation modelling nonlinear vibrations of beams. Acta Mech. 186(1–4), 135–139 (2006). https://doi.org/10.1007/s00707-006-0350-7

    Article  MATH  Google Scholar 

  29. Emam, S.A.: A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams. Ph.D. thesis, Virginia Tech (2002)

  30. Nayfeh, A.H., Kreider, W., Anderson, T.J.: Investigation of natural frequencies and mode shapes of buckled beams. AIAA J. 33(6), 1121–1126 (1995). https://doi.org/10.2514/3.12669

    Article  MATH  Google Scholar 

  31. Huang, J.L., Su, R.K.L., Lee, R.Y.Y., Chen, S.H.: Various bifurcation phenomena in a nonlinear curved beam subjected to base harmonic excitation. Int. J. Bifurc. Chaos 28(07), 1830023 (2018). https://doi.org/10.1142/s0218127418300239

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Financial support from the National Natural Science Foundation of China (Grant Nos. 11972381, 11772100, and 11572354), the Fundamental Research Funds for the Central Universities (Grant No. 18lgzd08), and the National Science Foundation (Grant No. CMMI-1335397) are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A Derivation of the equation of motion of the nonlinear beam with fixed–fixed boundary conditions

Appendix A Derivation of the equation of motion of the nonlinear beam with fixed–fixed boundary conditions

Consider the nonlinear buckled beam with fixed–fixed boundaries. The bending moment \(M\left( {\tilde{x}},{\tilde{t}}\right) \) of the beam at position \({\tilde{x}}\) and time \({\tilde{t}}\) is

$$\begin{aligned} M\left( {\tilde{x}},{\tilde{t}}\right) =EI{{\tilde{y}}}'', \end{aligned}$$
(A.1)

where E is the Young’s modulus, I is the area moment of inertia of a cross section, \({{\tilde{y}}({\tilde{x}},{\tilde{t}})}\) is the transverse displacement of the beam at position \({{\tilde{x}}}\) and time \({{\tilde{t}}}\), and a prime denotes a partial derivative with respect to x. The axial strain \(\varepsilon \) is defined by

$$\begin{aligned} \varepsilon =\frac{\partial {U}}{\partial {{\tilde{x}}}}+\frac{1}{2}{\left( \frac{\partial {{\tilde{y}}}}{\partial {{\tilde{x}}}}\right) }^{2}, \end{aligned}$$
(A.2)

where \(U\left( {\tilde{x}},{\tilde{t}}\right) \) is the longitudinal displacement of the beam at position \({\tilde{x}}\) and time \({\tilde{t}}\). Consider governing equations for nonlinear beam vibrations in the following form [28]:

$$\begin{aligned} \rho \frac{\partial ^{2}{{\tilde{y}}}}{\partial {{{\tilde{t}}}^2}}+\frac{\partial ^{2}{M}}{\partial {{{\tilde{x}}}^2}}-\frac{\partial }{\partial {\tilde{x}}}\left( T\frac{\partial {\tilde{y}}}{\partial {\tilde{x}}}\right) =0, \end{aligned}$$
(A.3)
$$\begin{aligned} \rho \frac{\partial ^{2}U}{\partial {{\tilde{t}}}^2}-\frac{\partial {T}}{\partial {{\tilde{x}}}}=0, \end{aligned}$$
(A.4)

where \(T=EA\varepsilon \), in which A is the area of a cross section. The Kirchhoff hypothesis is that the axial inertial term in Eq. (A.4) can be neglected. One then obtains

$$\begin{aligned} \frac{\partial {T}}{\partial {{\tilde{x}}}}=0 \end{aligned}$$
(A.5)

and consequently

$$\begin{aligned} \varepsilon =\frac{\partial {U}}{\partial {{\tilde{x}}}}+\frac{1}{2}{\left( \frac{\partial {{\tilde{y}}}}{\partial {{\tilde{x}}}}\right) }^{2}=\text {const}. \end{aligned}$$
(A.6)

Integrating Eq. (A.6) over the spatial domain \(\left[ 0,l\right] \) yields

$$\begin{aligned} \varDelta {l}= & {} U^{\left( l\right) }-U^{\left( 0\right) } +\frac{1}{2}\int _{0}^{l}{{{\left( {\frac{{\partial {\tilde{y}}}}{{\partial {\tilde{x}}}}}\right) }^{2}}\mathrm{d}{\tilde{x}}}\nonumber \\= & {} -U^b+\frac{1}{2}\int _{0}^{l}{{{\left( {\frac{{\partial {\tilde{y}}}}{{\partial {\tilde{x}}}}}\right) }^{2}}\mathrm{d}{\tilde{x}}}, \end{aligned}$$
(A.7)

where \(U^{\left( 0\right) }\) and \(U^{\left( l\right) }\) are the constant longitudinal displacements of the beam at \({\tilde{x}}=0\) and \({\tilde{x}}=l\), respectively. Therefore, the axial force in the beam is given by

$$\begin{aligned} T=\frac{EA}{l}\left[ -U^b+\frac{1}{2}\int _{0}^{l}{{{\left( {\frac{{\partial {\tilde{y}}}}{{\partial {\tilde{x}}}}}\right) }^{2}}\mathrm{d}{\tilde{x}}}\right] . \end{aligned}$$
(A.8)

Substituting Eq. (A.8) into Eq. (A.3) yields

$$\begin{aligned}&\rho \frac{\partial ^{2}{{\tilde{y}}}}{\partial {{{\tilde{t}}}^2}}\nonumber \\&\quad +EI\frac{\partial ^{4}{\tilde{y}}}{\partial {{\tilde{x}}^{4}}}\nonumber \\&\quad +\frac{EA}{l}\left[ U_b-\frac{1}{2}\int _{0}^{l}{\left( \frac{\partial {\tilde{y}}}{\partial {\tilde{x}}}\right) }^{2}\mathrm{d}{\tilde{x}}\right] \frac{\partial ^2{\tilde{y}}}{\partial {{\tilde{x}}}^2}=0. \end{aligned}$$
(A.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J.L., Xiao, L.J. & Zhu, W.D. Investigation of quasi-periodic response of a buckled beam under harmonic base excitation with an “unexplained” sideband structure. Nonlinear Dyn 100, 2103–2119 (2020). https://doi.org/10.1007/s11071-020-05641-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05641-3

Keywords

Navigation