Skip to main content
Log in

Approximation of data using non-integer harmonics series

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper introduces a method for approximating real world data by means of non-integer harmonics series (NIHS). The NIHS terms are sinusoidal functions of arbitrary amplitude, frequency and phase shift that can be computed by direct numerical algorithms. Applications go from obtaining time derivatives up to forecasting future values. Three illustrative examples with the Dow Jones Industrial stock market index, the Europe Brent Spot Price FOB and the daily temperature records of New York city are studied. The results show the effectiveness of the NIHS when dealing with real world time data series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Almeida, L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42(11), 3084–3091 (1994)

    Article  Google Scholar 

  2. Apostol, T.M.: Modular Functions and Dirichlet Series in Number Theory. Springer, New York (2012)

    Google Scholar 

  3. Arecchi, F., Meucci, R., Puccioni, G., Tredicce, J.: Experimental evidence of subharmonic bifurcations, multistability, and turbulence in a Q-switched gas laser. Phys. Rev. Lett. 49(17), 1217 (1982)

    Article  Google Scholar 

  4. Barros, J., Diego, R.I.: A new method for measurement of harmonic groups in power systems using wavelet analysis in the IEC standard framework. Electr. Power Syst. Res. 76(4), 200–208 (2006)

    Article  Google Scholar 

  5. Bultheel, A.: Laurent Series and Their Padé Approximations. Birkhäuser, Basel (2012)

    MATH  Google Scholar 

  6. Cao, X.R.: The Maclaurin series for performance functions of Markov chains. Adv. Appl. Probab. 30, 676–692 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, J., Chau, K., Chan, C., Jiang, Q.: Subharmonics and chaos in switched reluctance motor drives. IEEE Trans. Energy Convers. 17(1), 73–78 (2002)

    Article  Google Scholar 

  8. Cohen, L.: Time-Frequency Analysis. Prentice-Hall, Upper Saddle River (1995)

    Google Scholar 

  9. Corliss, G., Chang, Y.: Solving ordinary differential equations using Taylor series. ACM Trans. Math. Softw. (TOMS) 8(2), 114–144 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deuzé, J., Herman, M., Santer, R.: Fourier series expansion of the transfer equation in the atmosphere-ocean system. J. Quant. Spectrosc. Radiat. Transf. 41(6), 483–494 (1989)

    Article  Google Scholar 

  11. Duffin, R.J., Schaeffer, A.C.: A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 72(2), 341–366 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dym, H., McKean, H.: Fourier Series and Integrals. Academic Press, San Diego (1972)

    MATH  Google Scholar 

  13. Hardy, G.H., Littlewood, J.E.: A convergence criterion for Fourier series. Math. Z. 28(1), 612–634 (1928)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hlubina, P., Luňáček, J., Ciprian, D., Chlebus, R.: Windowed Fourier transform applied in the wavelength domain to process the spectral interference signals. Opt. Commun. 281(9), 2349–2354 (2008)

    Article  Google Scholar 

  15. Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, H.H., Zheng, Q., Yen, N.C., Tung, C.C., Liu, H.H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 454, pp. 903–995. The Royal Society (1998)

  16. Hunt, B.R.: The prevalence of continuous nowhere differentiable functions. Proc. Am. Math. Soc. 122(3), 711–717 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jin, F.F., Neelin, J.D., Ghil, M.: El Niño on the devil’s staircase: annual subharmonic steps to chaos. Science 264(7), 72 (1994)

    Google Scholar 

  18. Kemao, Q.: Windowed Fourier transform for fringe pattern analysis. Appl. Opt. 43(13), 2695–2702 (2004)

    Article  Google Scholar 

  19. Lauterborn, W., Cramer, E.: Subharmonic route to chaos observed in acoustics. Phys. Rev. Lett. 47(20), 1445 (1981)

    Article  Google Scholar 

  20. Levin, A., Lubinsky, D.: Best rational approximations of entire functions whose Maclaurin series coefficients decrease rapidly and smoothly. Trans. Am. Math. Soc. 293(2), 533–545 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Li, Y.M., Hsu, V.Y.: Curve offsetting based on Legendre series. Comput. Aided Geom. Des. 15(7), 711–720 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Loeffel, J.J., Martin, A., Simon, B., Wightman, A.S.: Padé approximants and the anharmonic oscillator. Phys. Lett. B 30(9), 656–658 (1969)

    Article  Google Scholar 

  23. Lopes, A.M., Machado, J.T.: Analysis of temperature time-series: embedding dynamics into the mds method. Commun. Nonlinear Sci. Numer. Simul. 19(4), 851–871 (2014)

    Article  Google Scholar 

  24. Lopes, A.M., Machado, J.T., Mata, M.E.: Analysis of global terrorism dynamics by means of entropy and state space portrait. Nonlinear Dyn. 85(3), 1547–1560 (2016)

    Article  Google Scholar 

  25. Lopes, A.M., Tenreiro Machado, J.A.: State space analysis of forest fires. J. Vib. Control 22(9), 2153–2164 (2016)

    Article  Google Scholar 

  26. Lopes, A.M., Tenreiro Machado, J.A., Galhano, A.M.: Empirical laws and foreseeing the future of technological progress. Entropy 18(6), 217 (2016)

    Article  MathSciNet  Google Scholar 

  27. Machado, J.T., Lopes, A.M.: The persistence of memory. Nonlinear Dyn. 79(1), 63–82 (2015)

    Article  Google Scholar 

  28. Mallat, S.: A Wavelet Tour of Signal Processing. Academic press, Burlington (1999)

    MATH  Google Scholar 

  29. Malliavin, P., Mancino, M.E.: Fourier series method for measurement of multivariate volatilities. Financ. Stoch. 6(1), 49–61 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mastrolia, P., Mirabella, E., Peraro, T.: Integrand reduction of one-loop scattering amplitudes through Laurent series expansion. J. High Energy Phys. 2012(6), 1–28 (2012)

    Article  MathSciNet  Google Scholar 

  31. Mertins, A.: Signal Analysis: Wavelets, Filter Banks, Time-Frequency Transforms and Applications. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  32. Nigmatullin, R.R., Khamzin, A.A., Machado, J.T.: Detection of quasi-periodic processes in complex systems: how do we quantitatively describe their properties? Phys. Scr. 89(1), 015201 (2013)

    Article  Google Scholar 

  33. Paraskevopoulos, P.: Legendre series approach to identification and analysis of linear systems. IEEE Trans. Autom. Control 30(6), 585–589 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  34. Peng, Z., Peter, W.T., Chu, F.: A comparison study of improved Hilbert–Huang transform and wavelet transform: application to fault diagnosis for rolling bearing. Mech. Syst. Signal Process. 19(5), 974–988 (2005)

    Article  Google Scholar 

  35. Polderman, J.W., Willems, J.C.: Introduction to Mathematical Systems Theory: A Behavioral Approach. Springer, New York (1998)

    Book  MATH  Google Scholar 

  36. Portnoff, M.: Time-frequency representation of digital signals and systems based on short-time Fourier analysis. IEEE Trans. Acoust. Speech Signal Process. 28(1), 55–69 (1980)

    Article  MATH  Google Scholar 

  37. Qian, S., Chen, D.: Discrete Gabor transform. IEEE Trans. Signal Process. 41(7), 2429–2438 (1993)

    Article  MATH  Google Scholar 

  38. Qian, S., Chen, D.: Joint time-frequency analysis. IEEE Signal Process. Mag. 16(2), 52–67 (1999)

    Article  Google Scholar 

  39. Sejdić, E., Djurović, I., Stanković, L.: Fractional Fourier transform as a signal processing tool: An overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)

    Article  MATH  Google Scholar 

  40. Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 3(1), 79–98 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  41. Soussou, J., Moavenzadeh, F., Gradowczyk, M.: Application of Prony series to linear viscoelasticity. Trans. Soc. Rheol. 14(4), 573–584 (1970)

    Article  Google Scholar 

  42. Stein, E.M., Shakarchi, R.: Fourier Analysis: An Introduction. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

  43. Suetin, S.P.: Padé approximants and efficient analytic continuation of a power series. Russ. Math. Surv. 57(1), 43–141 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  44. Takens, F.: Detecting strange attractors in turbulence. In: Dynamical Systems and Turbulence, Warwick 1980, pp. 366–381. Springer (1981)

  45. Truesdell, C.: The Tragicomical History of Thermodynamics, 1822–1854. Springer, New York (2013)

    MATH  Google Scholar 

  46. Wilden, I., Herzel, H., Peters, G., Tembrock, G.: Subharmonics, biphonation, and deterministic chaos in mammal vocalization. Bioacoustics 9(3), 171–196 (1998)

    Article  Google Scholar 

  47. Wu, Z., Huang, N.E.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

    Article  Google Scholar 

  48. Yalçinbaş, S.: Taylor polynomial solutions of nonlinear Volterra–Fredholm integral equations. Appl. Math. Comput. 127(2), 195–206 (2002)

    MathSciNet  MATH  Google Scholar 

  49. Yan, R., Gao, R.X., Chen, X.: Wavelets for fault diagnosis of rotary machines: a review with applications. Signal Process. 96, 1–15 (2014)

    Article  Google Scholar 

  50. Yao, J., Krolak, P., Steele, C.: The generalized Gabor transform. IEEE Trans. Image Process. 4(7), 978–988 (1995)

    Article  Google Scholar 

  51. Young, R.M.: An Introduction to Non-Harmonic Fourier Series. Academic Press, New York (2001)

    Google Scholar 

  52. Zayed, A.I.: Hilbert transform associated with the fractional Fourier transform. IEEE Signal Process. Lett. 5(8), 206–208 (1998)

    Article  Google Scholar 

  53. Zygmund, A.: Trigonometric Series. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Yahoo Finance (https://finance.yahoo.com/), the U.S. Energy Information Administration (http://www.eia.gov/dnav/pet/hist/LeafHandler. ashx?n=PET&s=RBRTE&f=D), and the University of Dayton - Environmental Protection Agency, Average Daily Temperature Archive (http://academic.udayton.edu/kissock/http/Weather/default.htm) for the data used in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to António M. Lopes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenreiro Machado, J.A., Lopes, A.M. Approximation of data using non-integer harmonics series. Nonlinear Dyn 89, 2845–2854 (2017). https://doi.org/10.1007/s11071-017-3629-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-017-3629-4

Keywords

Navigation