Skip to main content
Log in

A nonlinear H-infinity control method for multi-DOF robotic manipulators

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

The paper proposes a new nonlinear H-infinity control method for multi-DOF robotic manipulators. At first stage local linearization of the robotic model is performed round its present operating point. The approximation error that is introduced to the linearized model due to truncation of higher-order terms in the performed Taylor series expansion is represented as a disturbance. The control problem is now formulated as a mini–max differential game in which the control input tries to minimize the state vector tracking error while the disturbances affecting the model try to maximize it. Using the linearized description of the robot’s dynamics, an H-infinity feedback controller is designed through the solution of a Riccati equation at each step of the control algorithm. The inherent robustness properties of H-infinity control assure that the disturbance effects will be eliminated and the robot’s state variables will converge to the desirable setpoints. The proposed method stands for a reliable solution to the problem of nonlinear control and stabilization for multi-DOF robotic manipulators. It is also a novel approach, comparing to control of a robotic manipulator based on global linearization of its dynamics. Its efficiency is further confirmed through simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Kim, M.J., Choi, Y., Chung, W.K.: Bringing nonlinear \(H_{\infty }\) optimality to robot controllers. IEEE Trans. Robot. 31(3), 682–698 (2015)

    Article  Google Scholar 

  2. Salvucci, V., Kimura, Y., Sehoon, O., Koseki, T., Hori, Y.: Comparing approaches for actuator redundancy resolution in biarticularly-actuated robot arms. IEEE Trans. Mechatron. 19(2), 765–776 (2014)

    Article  Google Scholar 

  3. Chen, B.S., Lee, T.S., Feng, J.H.: A nonlinear \(H_{\infty }\) control design in robotic systems under parameter perturbation and external disturbance. Int. J. Control 59(2), 459–461 (1994)

    MathSciNet  Google Scholar 

  4. Ortega, M.G., Vargas, M., Vivas, C., Rubio, F.R.: Robustness improvement of a nonlinear \(H_{\infty }\) controller for robot manipulators via saturation functions. J. Robot. Syst. 22(8), 421–437 (2005)

    Article  MATH  Google Scholar 

  5. Raffo, G.V., Ortega, M.G., Rubio, F.R.: An integral predictive/nonlinear \(H_{\infty }\) control structure for a quadratic helicopter. Automatica 46(1), 29–39 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Park, J., Chung, W.: Design of a robust \(H_{\infty }\) PID control for industrial manipulators. Trans. ASME J. Dyn. Syst. Measurement Control 122(4), 801–812 (2000)

    Article  Google Scholar 

  7. Moreno-Valenzuela, J., Santibanez, V.: Robust saturated PI joint velocity control for robot manipulators. Asian J. Control 15(1), 64–79 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Moreno-Valenzuela, J., Aguilar-Avela, C., Puga-Guzman, S.A., Santibnez, V.: Adaptive neural network control for the trajectory tracking of the furuta pendulum. Cybern, IEEE Trans (2016). doi:10.1109/TCYB.2015.2509863

  9. Ghosh, A., Krishnan, T.R., Subudhi, B.: Robust proportional integral- derivative compensation of an inverted cart-pendulum system: An experimental study. IET Control Theory Appl. 6(8), 11451152 (2012)

    Article  MathSciNet  Google Scholar 

  10. Gonzlez-Vzquez, S., Moreno-Valenzuela, J.: Time-scale separation of a class of robust PD-type tracking controllers for robot manipulators. ISA Trans. 52(3), 418–428 (2013)

    Article  Google Scholar 

  11. Rigatos, G.: Modelling and Control for Intelligent Industrial Systems: Advanced Algorithms in Robotics and Industrial Engineering. Springer, Berlin (2011)

    Book  MATH  Google Scholar 

  12. Rigatos, G.: Advanced models of neural networks: nonlinear dynamics and stochasticity in biological neurons. Springer, Berlin (2013)

    MATH  Google Scholar 

  13. Rigatos, G.: Nonlinear control and filtering using differential flatness approaches: applications to electromechanicsl systems. Springer, Berlin (2015)

    Book  MATH  Google Scholar 

  14. Khalil, H.K.: Nonlinear systems, 2nd edn. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  15. Sira-Ramirez, H., Agrawal, S.: Differentially Flat Systems. Marcel Dekker, New York (2004)

    MATH  Google Scholar 

  16. Rigatos, G., Siano, P., Raffo, G.: An H-infinity nonlinear control approach for multi-DOF robotic manipulators. In: IFAC MIM, 2016, Troyes, France (2016)

  17. Doyle, J.C., Glover, K., Khargonekar, P.P., Francis, B.A.: State-space solutions to standard \(H_2\) and \(H_{\infty }\) control problems. IEEE Trans. Autom. Control 34, 831–847 (1989)

    Article  MATH  Google Scholar 

  18. Kurylowicz, A., Jaworska, I., Tzafestas, S.G.: Robust stabilizing control: an overview. In: Tzafestas, S.G. (ed.) Applied Control—Current Trends and Modern Methodologies, pp. 289–324. Marcel Dekker, New York (1993)

    Google Scholar 

  19. Lublin, L., Athans, M.: An experimental comparison of and designs for interferometer testbed. Lectures Notes in Control and Information Sciences: Feedback Control , Nonlinear Systems and Complexity, (Francis B. and Tannenbaum A., eds.), Springer, Berlin. pp. 150–172, (1995)

  20. Ali, H.S., Boutat-Baddas, L., Becis-Aubry, Y., Darouach, M.: \(H_{\infty }\) control of a SCARA robot using polytopic LPV approach. In: 14th Mediterranean Conference on Control and Automation, IEEE MED 2006, Ancina, Italy (2006)

  21. Stout, W.L., Sawan, M.E.: Application of H-infinity theory to robot manipulator control. In: First IEEE Conference on Control Applications, Dayton, OH, USA (1992)

  22. Rigatos, G.G., Tzafestas, S.G.: Extended Kalman filtering for fuzzy modelling and multi-sensor fusion. Math. Compu. Model. Dyn. Syst. 13, 251–266 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Basseville, M., Nikiforov, I.: Detection of Abrupt Changes: Theory and Applications. Prentice-Hall, Upper Saddle River (1993)

    Google Scholar 

  24. Rigatos, G., Zhang, Q.: Fuzzy model validation using the local statistical approach. Fuzzy Sets Syst. 60(7), 882–904 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rigatos, G., Siano, P., Wira, P., Profumo, F.: Nonlinear H-infinity feedback control for asynchronous motors of electric trains. J. Intell. Ind. Syst. 1(2), 85–98 (2015)

    Article  Google Scholar 

  26. Rigatos, G., Siano, P., Cecati, C.: Electric Power Compoments and Systems. A new nonlinear H-infinity feedback control approach for three-phase voltage source converters. Taylor and Francis, Oxfordshire (2015)

    Google Scholar 

  27. Toussaint, G., Basar, T., Bullo, F.: \(H_{\infty }\) optimal tracking control techniques for nonlinear underactuated systems. In: Proceedings of the 39th IEEE Conference on Decision and Control Sydney, Australia, December, (2000)

  28. Raffo, G.V., Ortega, M.G., Rubio, F.R.: Nonlinear H-Infinity Controller for the Quad-Rotor Helicopter with Input Coupling, In: 18th World Congress of the IFAC, 2011, Milan, Italy, Aug. (2011)

  29. Raffo, G.V., Ortega, M.G., Rubio, F.R.: Path tracking of a UAV via an underactuated H-infinity control strategy. Eur. J. Control 17, 194–213 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Du, H., Zhang, N.: \(H_{\infty }\) control of active vehicle suspensions with actuator time delay. J. Sound Vib. 301, 236–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yamashita, M., Fujimori, K., Hakayawa, K., Kimura, H.: Application of \(H_{\infty }\) control to active suspension systems. Automatica 30(11), 1717–1729 (1994)

    Article  Google Scholar 

  32. Galicki, M.: Finite-time control of robotic manipulators. Automatica 51, 49–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  33. Shang, W., Cong, S.: Robust nonlinear control of a planar 2-DOF parallel manipulator with redundant actuation. Robot. Comput. Integr. Manuf. 30, 597–804 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research work was funded by Grant No 5352 Nonlinear Control and Filtering of the Unit of Industrial Automation of the Industrial Systems Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rigatos.

Electronic supplementary material

Appendices

Appendix 1: Dynamic model of the multi-DOF robotic system

The dynamic model of the 2-DOF rigid-link robot which is depicted again in Fig. 15 and under the assumption that the masses of the links are concentrated at the links’ end is given by

$$\begin{aligned} D(\theta )\ddot{\theta }+h(\theta ,\dot{\theta })+g(\theta )=\tau \end{aligned}$$
(53)

where \(D(\theta )\) is the inertia matrix

$$\begin{aligned} D(\theta )=\begin{pmatrix} (m_1+m_2){l_1^2}+{m_1}{l_2^2}+2{m_2}{l_1}{l_2}\hbox {cos}(\theta _2) &{}\quad {m_2}{l_2^2}+{m_2}{l_1}{l_2}\hbox {cos}(\theta _2) \\ {m_2}{l_2^2}+{m_2}{l_1}{l_2}\hbox {cos}(\theta _2) &{}\quad {m_2}{l_2}(l_1+l_2)\hbox {cos}(\theta _2) \end{pmatrix} \end{aligned}$$
(54)

\(h(\theta ,\dot{\theta })\) is the Coriolis and centrifugal forces vector

$$\begin{aligned} h(\theta ,\dot{\theta })= \begin{pmatrix} -{m_2}{l_1^2}\hbox {sin}(\theta _2)\dot{\theta }_2^2-2{m_2}{l_1^2}\hbox {sin}(\theta _2){\dot{\theta }_1}{\dot{\theta }_2} \\ {m_2}{l_1^2}\hbox {sin}(\theta _2)\dot{\theta }_1^2 \end{pmatrix} \end{aligned}$$
(55)

\(g(\theta )\) is the gravitational forces vector

$$\begin{aligned} g(\theta )= \begin{pmatrix} (m_1+m_2)g{l_1}\hbox {cos}(\theta _1)+{m_2}g{l_2}\hbox {cos}(\theta _1+\theta _2) \\ {m_2}g{l_2}\hbox {cos}(\theta _1+\theta _2) \end{pmatrix} \end{aligned}$$
(56)

and \(\tau (t)\) is the control inputs vector consisting of the torques that are generated by the motors mounted on the robot’s joints.

Fig. 15
figure 15

A 2-DOF rigid-link robotic manipulator

It holds that

$$\begin{aligned} D^{-1}(\theta )={1 \over {detD}} \begin{pmatrix} {m_2}{l_2}(l_1+l_2)\hbox {cos}(\theta _2) &{} -{m_2}{l_2^2}+{m_2}{l_1}{l_2}\hbox {cos}(\theta _2) \\ -{m_2}{l_2^2}+{m_2}{l_1}{l_2}\hbox {cos}(\theta _2) &{} \quad (m_1+m_2){l_1^2}+{m_2}{l_2^2}+2{m_2}{l_1}{l_2}\hbox {cos}(\theta _2) \end{pmatrix} \end{aligned}$$
(57)

where the determinant of D is

$$\begin{aligned} detD= & {} [(m_1+m_2){l_1^2}+{m_2}{l_2^2}\nonumber \\&+\,2{m_2}{l_1}{l_2} \hbox {cos}(\theta _2)][{m_2}{l_2}(l_1+l_2)\hbox {cos}(\theta _2)]\nonumber \\&-\,[{m_2}{l_2^2}+{m_2}{l_1}{l_2}\hbox {cos}(\theta _2)]^2\nonumber \\ detD= & {} (m_1+m_2){m_2}{l_1^2}{l_2}(l_1+l_2)\hbox {cos}(\theta _2)\nonumber \\&+\,{m_2^2}{l_2^3}(l_1+l_2)\hbox {cos}(\theta _2)\nonumber \\&+\,2{m_2^2}{l_1}{l_2^2}(l_1+l_2)\hbox {cos}^2(\theta _2)-\nonumber \\&-\,{m_2^2}{l_2^4}-{m_2^2}{l_1^2}{l_2^2}\hbox {cos}^2(\theta _2)\nonumber \\&-\,2{m_2^2}{l_1}{l_2^3}\hbox {cos}(\theta _2) \end{aligned}$$
(58)

Without loss of generality, the following parameters’ values are assumed: \(m_1=1\,{\hbox {kg}}\), \(m_2=1\,{\hbox {kg}}\), \(l_1=1{\hbox {m}}\), \(l_2=1{\hbox {m}}\), and \(g=10m/sec^2\). Thus, the inverse of the inertia matrix \(D(\theta )\) becomes

$$\begin{aligned} D^{-1}(\theta )={1 \over {detD}} \begin{pmatrix} 2\hbox {cos}(\theta _2) &{} -1+\hbox {cos}(\theta _2) \\ -1+\hbox {cos}(\theta _2) &{} 2+2\hbox {cos}(\theta _2) \end{pmatrix} \end{aligned}$$
(59)

with

$$\begin{aligned} detD=4\hbox {cos}(\theta _2)+3\hbox {cos}^2(\theta _2)-1 \end{aligned}$$
(60)

For the previously given values of the parameters in the robot’s model, one has

$$\begin{aligned} h(\theta ,\dot{\theta })= & {} \begin{pmatrix} -\hbox {sin}(\theta _2)\dot{\theta }_2^2-2\hbox {sin}(\theta _2)\dot{\theta _1}\dot{\theta _2} \\ \hbox {sin}(\theta _2)\dot{\theta }_1^2 \end{pmatrix} \end{aligned}$$
(61)
$$\begin{aligned} g(\theta )= & {} \begin{pmatrix} 10\hbox {cos}(\theta _1)+10\hbox {cos}(\theta _1+\theta _2) \\ 10\hbox {cos}(\theta _1+\theta _2) \end{pmatrix} \end{aligned}$$
(62)

Using the above one gets

$$\begin{aligned}&-\,D^{-1}(\theta )h(\theta ,\dot{\theta })\nonumber \\&\quad ={-{1} \over {detD}} \begin{pmatrix} 2\hbox {cos}(\theta _2) &{} -1+\hbox {cos}(\theta _2) \\ &{} \\ -1+\hbox {cos}(\theta _2) &{} 2+2\hbox {cos}(\theta _2) \end{pmatrix}\nonumber \\&\qquad \times \,\begin{pmatrix} -\hbox {sin}(\theta _2)\dot{\theta }_2^2-2\hbox {sin}(\theta _2){\dot{\theta }_1}{\dot{\theta }_2} \\ {\hbox {sin}(\theta )_2}{\dot{\theta }_1^2} \end{pmatrix} \end{aligned}$$
(63)

or equivalently

$$\begin{aligned}&-\,D^{-1}(\theta )h(\theta ,\dot{\theta }) ={-{1} \over {detD}}\nonumber \\&\begin{pmatrix} 2\hbox {cos}(\theta _2)[-\hbox {sin}(\theta _2)\dot{\theta }_2^2-2\hbox {sin}(\theta _2){\dot{\theta }_1}{\dot{\theta }_2}]\\ +\,[-1+\hbox {cos}(\theta _2)]\hbox {sin}(\theta )_2{\dot{\theta }_1^2} \\ [-1+\hbox {cos}(\theta _2)][-\hbox {sin}(\theta _2)\dot{\theta }_2^2-2\hbox {sin}(\theta _2){\dot{\theta }_1}{\dot{\theta }_2}]\\ +\,[2+2\hbox {cos}(\theta _2)]{\hbox {sin}(\theta )_2}{\dot{\theta }_1^2} \end{pmatrix}\nonumber \\ \end{aligned}$$
(64)

and also

$$\begin{aligned}&-\,D^{-1}(\theta )g(\theta )\nonumber \\&\quad =-{{1} \over {detD}} \begin{pmatrix} 2\hbox {cos}(\theta _2) &{} -1+\hbox {cos}(\theta _2) \\ -1+\hbox {cos}(\theta _2) &{} 2+2\hbox {cos}(\theta _2) \end{pmatrix}\nonumber \\&\quad \begin{pmatrix} 10\hbox {cos}(\theta _1)+10\hbox {cos}(\theta _1+theta_2) \\ 10\hbox {cos}(\theta _1+\theta _2) \end{pmatrix} \end{aligned}$$
(65)

or equivalently

$$\begin{aligned}&-\,D^{-1}(\theta )g(\theta ) ={-{1} \over {detD}}\nonumber \\&\begin{pmatrix} 2\hbox {cos}(\theta _2)[10\hbox {cos}(\theta _1)+10\hbox {cos}(\theta _1+\theta _2)]\\ +\,[-1+\hbox {cos}(\theta _2)]10\hbox {cos}(\theta _1+\theta _2) \\ [-1+\hbox {cos}(\theta _2)][10\hbox {cos}(\theta _1)+10\hbox {cos}(\theta _1+\theta _2)]\\ +\,[2+2\hbox {cos}(\theta _2)]10\hbox {cos}(\theta _1+\theta _2) \end{pmatrix}\nonumber \\ \end{aligned}$$
(66)

Next, by defining the state variables \(x_1=\theta _1\), \(x_2=\dot{\theta }_1\), \(x_3=\theta _2\) and \(x_4=\dot{\theta }_2\) one gets

$$\begin{aligned}&D^{-1}(\theta )\nonumber \\&\quad = \begin{pmatrix} {{2\hbox {cos}(x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} &{} {{-1+\hbox {cos}(x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \\ {{-1+\hbox {cos}(x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} &{} {{2+2\hbox {cos}(x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{pmatrix}\nonumber \\ \end{aligned}$$
(67)

and also

$$\begin{aligned} -D^{-1}(\theta )h(\theta ,\dot{\theta }) = -\begin{pmatrix} {{2\hbox {cos}(x_3)[-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+[-1+\hbox {cos}(x_3)]\hbox {sin}(x_3){x_2^2}} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \\ \\ {{[1+\hbox {cos}(x_3)][-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+[2+2\hbox {cos}(x_3)]\hbox {sin}(x_3){x_2^2}} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{pmatrix} \end{aligned}$$
(68)

and similarly

$$\begin{aligned} -D^{-1}(\theta )g(\theta )=-\begin{pmatrix} {{2\hbox {cos}(x_3)[10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)]+[-1+\hbox {cos}(x_3)][10\hbox {cos}(x_1+x_3)]} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \\ \\ {{[-1+\hbox {cos}(x_3)][10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)]+[2+2\hbox {cos}(x_3)]10\hbox {cos}(x_1+x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{pmatrix} \end{aligned}$$
(69)

The state-space equations of the robotic model are

$$\begin{aligned} \begin{pmatrix} \ddot{x}_1 \\ \ddot{x}_3 \end{pmatrix}=-{D^{-1}(\theta )}h(\theta ,\dot{\theta })-{D^{-1}(\theta )}g(\theta )-{D^{-1}(\theta )}{\tau } \end{aligned}$$
(70)

and using that the state vector is \(x=[x_1,x_2,x_3,x_4]^T=[\theta _1,\dot{\theta }_1,\theta _2,\dot{\theta }_2]^T\) and the control inputs vector is \(\tau =[\tau _1,\tau _2]^T=[u_1,u_2]^T\) this is also written in the form

$$\begin{aligned} \dot{x}=f(x)+g_a(x){u_1}+g_b(x)u_2 \end{aligned}$$
(71)

or equivalently

$$\begin{aligned} \begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{pmatrix}= \begin{pmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{pmatrix}+ \begin{pmatrix} g_{a_1} \\ g_{a_2} \\ g_{a_3} \\ g_{a_4} \end{pmatrix}{u_1}+ \begin{pmatrix} g_{b_1} \\ g_{b_2} \\ g_{b_3} \\ g_{b_4} \end{pmatrix}{u_2} \end{aligned}$$
(72)

with

$$\begin{aligned}&f_1=x_2 \end{aligned}$$
(73)
$$\begin{aligned}&f_2=-{{2\hbox {cos}(x_3)[-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+[-1+\hbox {cos}(x_3)]\hbox {sin}(x_3){x_2^2}} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}}-\nonumber \\&\qquad \quad -\,{{2\hbox {cos}(x_3)[10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)]+[-1+\hbox {cos}(x_3)][10\hbox {cos}(x_1+x_3)]} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{aligned}$$
(74)
$$\begin{aligned}&f_3=x_4 \end{aligned}$$
(75)
$$\begin{aligned}&f_4=-{{[1+\hbox {cos}(x_3)][-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+[2+2\hbox {cos}(x_3)]\hbox {sin}(x_3){x_2^2}} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}}\nonumber \\&\qquad \quad -\,{{[-1+\hbox {cos}(x_3)][10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)]+[2+2\hbox {cos}(x_3)]10\hbox {cos}(x_1+x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{aligned}$$
(76)

Moreover, one has

figure c

Appendix 2: Linearization of the robot’s dynamics

The Jacobian matrices of the model of the 2-DOF robotic manipulator are defined as

$$\begin{aligned} {\nabla _x}f\mid _{(x^{*},u^{*})}= & {} \begin{pmatrix} {{{\partial }{f_1}} \over {{\partial }{x_1}}} &{} {{{\partial }{f_1}} \over {{\partial }{x_2}}} &{} {{{\partial }{f_1}} \over {{\partial }{x_3}}} &{} {{{\partial }{f_1}} \over {{\partial }{x_4}}} \\ {{{\partial }{f_2}} \over {{\partial }{x_1}}} &{} {{{\partial }{f_2}} \over {{\partial }{x_2}}} &{} {{{\partial }{f_2}} \over {{\partial }{x_3}}} &{} {{{\partial }{f_2}} \over {{\partial }{x_4}}} \\ {{{\partial }{f_3}} \over {{\partial }{x_1}}} &{} {{{\partial }{f_3}} \over {{\partial }{x_2}}} &{} {{{\partial }{f_3}} \over {{\partial }{x_3}}} &{} {{{\partial }{f_3}} \over {{\partial }{x_4}}} \\ {{{\partial }{f_4}} \over {{\partial }{x_1}}} &{} {{{\partial }{f_4}} \over {{\partial }{x_2}}} &{} {{{\partial }{f_4}} \over {{\partial }{x_3}}} &{} {{{\partial }{f_4}} \over {{\partial }{x_4}}} \end{pmatrix}_{(x^{*},u^{*})} \end{aligned}$$
(78)
$$\begin{aligned} {\nabla _x}{g_a}\mid _{(x^{*},u^{*})}= & {} \begin{pmatrix} {{{\partial }{{g_a}_1}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_a}_1}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_a}_1}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_a}_1}} \over {{\partial }{x_4}}} \\ {{{\partial }{{g_a}_2}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_a}_2}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_a}_2}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_a}_2}} \over {{\partial }{x_4}}} \\ {{{\partial }{{g_a}_3}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_a}_3}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_a}_3}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_a}_3}} \over {{\partial }{x_4}}} \\ {{{\partial }{{g_a}_4}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_a}_4}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_a}_4}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_a}_4}} \over {{\partial }{x_4}}} \end{pmatrix}_{(x^{*},u^{*})} \end{aligned}$$
(79)
$$\begin{aligned} {\nabla _x}{g_b}\mid _{(x^{*},u^{*})}= & {} \begin{pmatrix} {{{\partial }{{g_b}_1}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_b}_1}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_b}_1}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_b}_1}} \over {{\partial }{x_4}}} \\ {{{\partial }{{g_b}_2}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_b}_2}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_b}_2}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_b}_2}} \over {{\partial }{x_4}}} \\ {{{\partial }{{g_b}_3}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_b}_3}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_b}_3}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_b}_3}} \over {{\partial }{x_4}}} \\ {{{\partial }{{g_b}_4}} \over {{\partial }{x_1}}} &{} {{{\partial }{{g_b}_4}} \over {{\partial }{x_2}}} &{} {{{\partial }{{g_b}_4}} \over {{\partial }{x_3}}} &{} {{{\partial }{{g_b}_4}} \over {{\partial }{x_4}}} \end{pmatrix}_{(x^{*},u^{*})} \end{aligned}$$
(80)

where

$$\begin{aligned}&\begin{array}{cccc} {{{\partial }{f_1}} \over {{\partial }{x_1}}} =0&{{{\partial }{f_1}} \over {{\partial }{x_2}}}=1&{{{\partial }{f_1}} \over {{\partial }{x_3}}} =0&{{{\partial }{f_1}} \over {{\partial }{x_4}}}=0 \end{array} \end{aligned}$$
(81)
$$\begin{aligned}&\begin{array}{c} {{{\partial }{f_2}} \over {{\partial }{x_1}}} =-{{{2\hbox {cos}(x_3)}[10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)] +[-1+\hbox {cos}(x_3)][10\hbox {cos}(x_1+x_3)]} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{array} \end{aligned}$$
(82)
$$\begin{aligned}&{{{\partial }{f_2}} \over {{\partial }{x_2}}}=-{{{-2\hbox {cos}(x_3)}{2\hbox {sin}(x_3)}{x_4}+[-1+\hbox {cos}(x_3)]\hbox {sin}(x_3){2{x_2}}} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \nonumber \\&- {{2\hbox {cos}(x_3)10\hbox {sin}(x_1+x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{aligned}$$
(83)
$$\begin{aligned}&{{{\partial }{f_2}} \over {{\partial }{x_3}}}=-\left\{ {{-2\hbox {sin}(x_3)[-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+2\hbox {cos}(x_3)[\hbox {cos}(x_3){x_4^2}-2\hbox {cos}(x_3){x_2}{x_4}]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]^2}}\right. \nonumber \\&\quad \left. + {{[-\hbox {sin}(x_3)]\hbox {sin}(x_3){x_2^2}+[-1+\hbox {cos}(x_3)]\hbox {cos}(x_3){x_2^2}} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]^2}} \right\} [4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1]\nonumber \\&\quad -\left\{ {{{2\hbox {sin}(x_3)[10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)]-2\hbox {cos}(x_3)10\hbox {sin}(x_1+x_3)}} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]^2}}\right. \nonumber \\&\quad \left. + {{[-\hbox {sin}(x_3)][10\hbox {cos}(x_1+x_3)]-[-1+\hbox {cos}(x_3)]\hbox {sin}(x_1+x_3)} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]^2}} \right\} [4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1] \end{aligned}$$
(84)
$$\begin{aligned}&\left\{ +{{2\hbox {cos}(x_3)[-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+[-1+\hbox {cos}(x_3)]\hbox {sin}(x_3){x_2^2}} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]^2}}\right. \nonumber \\&\quad \left. + {{2\hbox {cos}(x_3)[10\hbox {cos}(x_1){+}10\hbox {cos}(x_1{+}x_3)]{+}[-1+\hbox {cos}(x_3)][10\hbox {cos}(x_1{+}x_3)]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]^2}} \right\} [-4\hbox {sin}(x_3)-6\hbox {cos}(x_3)\hbox {sin}(x_3)]\nonumber \end{aligned}$$
$$\begin{aligned}&{{{\partial }{f_2}} \over {{\partial }{x_4}}}={{2\hbox {cos}(x_3)[-\hbox {sin}(x_3)2{x_4}-2\hbox {sin}(x_3){x_2}]} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{aligned}$$
(85)
$$\begin{aligned}&\begin{array}{cccc} {{{\partial }{f_3}} \over {{\partial }{x_1}}}=0&{{{\partial }{f_3}} \over {{\partial }{x_2}}}=0&{{{\partial }{f_3}} \over {{\partial }{x_3}}}=0&{{{\partial }{f_3}} \over {{\partial }{x_4}}}=1 \end{array} \end{aligned}$$
(86)
$$\begin{aligned}&{{{\partial }{f_4}} \over {{\partial }{x_1}}}=-{{[-1+\hbox {cos}(x_3)][-10\hbox {sin}(x_1)-10\hbox {sin}(x_1+x_3)]-[2+2\hbox {cos}(x_3)]10\hbox {sin}(x_1+x_3)} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{aligned}$$
(87)
$$\begin{aligned}&{{{\partial }{f_4}} \over {{\partial }{x_2}}}=-{{[1+\hbox {cos}(x_3)][-2\hbox {sin}(x_3){x_4}]+[2+2\hbox {cos}(x_3)]\hbox {sin}(x_3)2{x_2}} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{aligned}$$
(88)
$$\begin{aligned}&{{{\partial }{f_4}} \over {{\partial }{x_3}}}=-\{ {{-\hbox {sin}(x_3)[-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+[1+\hbox {cos}(x_3)][\hbox {cos}(x_3){x_4^2}-2\hbox {cos}(x_3){x_2}{x_4}]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2}\nonumber \\&\qquad \qquad + {{-2\hbox {sin}(x_3)\hbox {sin}(x_3){x_2^2}+[2+2\hbox {cos}(x_3)]\hbox {cos}(x_3){x_2^2}} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2} \} [4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1]\nonumber \\&\qquad \qquad -\left\{ {{-\hbox {sin}(x_3)[10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)]+[-1+\hbox {cos}(x_3)][-10\hbox {sin}(x_3)-10\hbox {sin}(x_1+x_3)]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2}\right. \nonumber \\&\qquad \qquad \left. + {{-2\hbox {sin}(x_3)10\hbox {cos}(x_1+x_3)-[2+2\hbox {cos}(x_3)]10\hbox {sin}(x_1+x_3)} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2}\right\} [4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1]\end{aligned}$$
(89)
$$\begin{aligned}&\left\{ {{[1+\hbox {cos}(x_3)][-\hbox {sin}(x_3){x_4^2}-2\hbox {sin}(x_3){x_2}{x_4}]+[2+2\hbox {cos}(x_3)]\hbox {sin}(x_3){x_2^2}} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2}\right. \nonumber \\&\quad \left. + {{[-1+\hbox {cos}(x_3)][10\hbox {cos}(x_1)+10\hbox {cos}(x_1+x_3)]+[2+2\hbox {cos}(x_3)]10\hbox {cos}(x_1+x_3)} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2}\right\} [-4\hbox {sin}(x_3)-6\hbox {cos}(x_3)\hbox {sin}(x_3)]\nonumber \\&{{{\partial }{f_4}} \over {{\partial }{x_4}}}={{[1+\hbox {cos}(cx_3)][-\hbox {sin}(x_3)2{x_4}-2\hbox {sin}(x_3){x_2}]} \over {4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}} \end{aligned}$$
(90)

In a similar manner, one computes

$$\begin{aligned}&\begin{array}{cccc} {{{\partial }{{g_a}_1}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_a}_1}} \over {{\partial }{x_2}}}=0&\quad {{{\partial }{{g_a}_1}} \over {{\partial }{x_3}}}=0&\quad {{{\partial }{{g_a}_1}} \over {{\partial }{x_4}}}=0 \end{array} \end{aligned}$$
(91)
$$\begin{aligned}&\begin{array}{ccc} {{{\partial }{{g_a}_2}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_a}_2}} \over {{\partial }{x_2}}}=0&\quad {{{\partial }{{g_a}_2}} \over {{\partial }{x_4}}}=0 \end{array} \end{aligned}$$
(92)
$$\begin{aligned}&{{{\partial }{{g_a}_2}} \over {{\partial }{x_3}}}= {{-2\hbox {sin}(x_3)[4\hbox {cos}(x_3)+4\hbox {cos}^2(x_3)-1]+2\hbox {cos}(x_3) [-4\hbox {sin}(x_3)-6\hbox {sin}(x_3)\hbox {cos}(x_3)]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2} \end{aligned}$$
(93)
$$\begin{aligned}&\begin{array}{cccc} {{{\partial }{{g_a}_3}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_a}_3}} \over {{\partial }{x_2}}}=0&\quad {{{\partial }{{g_a}_3}} \over {{\partial }{x_3}}}=0&\quad {{{\partial }{{g_a}_3}} \over {{\partial }{x_4}}}=0 \end{array} \end{aligned}$$
(94)
$$\begin{aligned}&\begin{array}{ccc} {{{\partial }{{g_a}_2}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_a}_2}} \over {{\partial }{x_2}}}=0&\quad {{{\partial }{{g_a}_2}} \over {{\partial }{x_4}}}=0 \end{array} \end{aligned}$$
(95)
$$\begin{aligned}&{{{\partial }{{g_a}_2}} \over {{\partial }{x_3}}}= {{-\hbox {sin}(x_3)[4\hbox {cos}(x_3)+4\hbox {cos}^2(x_3)-1]+[-1+\hbox {cos}(x_3)] [4\hbox {sin}(x_3)+6\hbox {sin}(x_3)\hbox {cos}(x_3)]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2} \end{aligned}$$
(96)

while one also obtains

$$\begin{aligned}&\begin{array}{cccc} {{{\partial }{{g_b}_1}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_b}_1}} \over {{\partial }{x_2}}}=0&{{{\partial }{{g_b}_1}} \over {{\partial }{x_3}}}=0&\quad {{{\partial }{{g_b}_1}} \over {{\partial }{x_4}}}=0 \end{array} \end{aligned}$$
(97)
$$\begin{aligned}&\begin{array}{ccc} {{{\partial }{{g_b}_2}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_b}_2}} \over {{\partial }{x_2}}}=0&\quad {{{\partial }{{g_b}_2}} \over {{\partial }{x_3}}}=0 \end{array} \end{aligned}$$
(98)
$$\begin{aligned}&\begin{array}{c} {{{\partial }{{g_b}_2}} \over {{\partial }{x_3}}}= {{-\hbox {sin}(x_3)[4\hbox {cos}(x_3)+4\hbox {cos}^2(x_3)-1]+[-1+\hbox {cos}(x_3)][4\hbox {sin}(x_3) +6\hbox {sin}(x_3)\hbox {cos}(x_3)]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2} \end{array}\end{aligned}$$
(99)
$$\begin{aligned}&\begin{array}{cccc} {{{\partial }{{g_b}_3}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_b}_3}} \over {{\partial }{x_2}}}=0&\quad {{{\partial }{{g_b}_3}} \over {{\partial }{x_3}}}=0&\quad {{{\partial }{{g_b}_3}} \over {{\partial }{x_4}}}=0 \end{array} \end{aligned}$$
(100)
$$\begin{aligned}&\begin{array}{ccc} {{{\partial }{{g_b}_4}} \over {{\partial }{x_1}}}=0&\quad {{{\partial }{{g_b}_4}} \over {{\partial }{x_2}}}=0&\quad {{{\partial }{{g_b}_4}} \over {{\partial }{x_3}}}=0 \end{array} \end{aligned}$$
(101)
$$\begin{aligned}&\begin{array}{c} {{{\partial }{{g_b}_4}} \over {{\partial }{x_3}}}= {{-2\hbox {sin}(x_3)[4\hbox {cos}(x_3)+4\hbox {cos}^2(x_3)-1]+[2+2\hbox {cos}(x_3)] [4\hbox {sin}(x_3)+6\hbox {sin}(x_3)\hbox {cos}(x_3)]} \over {[{4\hbox {cos}(x_3)+3\hbox {cos}^2(x_3)-1}]}^2} \end{array} \end{aligned}$$
(102)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rigatos, G., Siano, P. & Raffo, G. A nonlinear H-infinity control method for multi-DOF robotic manipulators. Nonlinear Dyn 88, 329–348 (2017). https://doi.org/10.1007/s11071-016-3245-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3245-8

Keywords

Navigation