Skip to main content
Log in

Adaptive fuzzy sliding mode control of input-delayed uncertain nonlinear systems through output-feedback

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

This paper deals with the design of stabilizing controllers for a class of uncertain nonlinear systems with unknown constant input time delay. A new control method is introduced which merges an adaptive fuzzy sliding mode predictor with an adaptive fuzzy sliding mode controller to circumvent the effects of the unknown time delay, nonlinearities, and unknown plant dynamics. The proposed predictor and controller can be implemented in the real time without recursive and tedious calculations and only by using output-feedback. The uniform ultimate boundedness of the closed-loop system is also guaranteed. Simulation and experiment studies on a nonlinear benchmark problem reveal the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A continuous function \(\sigma : [0,\infty ) \rightarrow [0,\infty )\) is of class \(\mathcal {K}_{\infty }\) if it is strictly increasing, \(\sigma (0) = 0\), and \(\sigma (s) \rightarrow \infty \; as \; s \rightarrow \infty \), uniformly in \(s \) based on [52].

References

  1. Ahmed-Ali, T., Karafyllis, I., Lamnabhi-Lagarrigue, F.: Global exponential sampled-data observers for nonlinear systems with delayed measurements. Syst. Control Lett. 62(7), 539–549 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bekiaris-Liberis, N., Krstic, M.: Compensation of time-varying input and state delays for nonlinear systems. J. Dyn. Syst. Meas. Control 134(1), 011,009 (2012)

    Article  MATH  Google Scholar 

  3. Bekiaris-Liberis, N., Krstic, M.: Compensation of state-dependent input delay for nonlinear systems. IEEE Trans. Autom. Control 58(2), 275–289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bekiaris-Liberis, N., Krstic, M.: Robustness of nonlinear predictor feedback laws to time-and state-dependent delay perturbations. Automatica 49(6), 1576–1590 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bresch-Pietri, D., Krstic, M.: Backstepping transformation of input delay nonlinear systems. arXiv:1305.5305 (2013)

  6. Cheng, C.C., Chen, C.Y.: Controller design for an overhead crane system with uncretainty. Control Eng. Pract. 4(5), 645–653 (1996)

    Article  Google Scholar 

  7. Fischer, N., Kamalapurkar, R., Fitz-Coy, N., Dixon, W.E.: Lyapunov-based control of an uncertain Euler–Lagrange system with time-varying input delay. In: 2012 American Control Conference (ACC) (2012)

  8. Fu, Y.M., Zhou, B., Duan, G.R.: Regional stability and stabilization of time-delay systems with actuator saturation and delay. Asian J. Control 16(3), 845–855 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ge, S.S., Hong, F., Lee, T.H.: Robust adaptive control of nonlinear systems with unknown time delays. Automatica 41(7), 1181–1190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gholami, A., Markazi, A.H.: A new adaptive fuzzy sliding mode observer for a class of mimo nonlinear systems. Nonlinear Dyn. 70(3), 2095–2105 (2012)

    Article  MathSciNet  Google Scholar 

  11. Haddad, W.M., Chellaboina, V.: Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach. Princeton University Press, Princeton (2008)

    MATH  Google Scholar 

  12. Hu, N., Tsai, J., Guo, S., Shieh, L., Chen, Y.: Low-order multi-rate linear time-invariant decentralized trackers using the new observer-based sub-optimal method for unknown sampled-data nonlinear time-delay system with closed-loop decoupling. Opt. Control Appl. Methods 32(4), 433–475 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hu, Q., Rangaiah, G.P.: A time delay compensation strategy for uncertain single-input single-output nonlinear processes. Ind. Eng. Chem. Res. 38(11), 4309–4316 (1999)

    Article  Google Scholar 

  14. Hwang, C.L., Chiang, C.C., Yeh, Y.W.: Adaptive fuzzy hierarchical sliding-mode control for the trajectory tracking of uncertain underactuated nonlinear dynamic systems. IEEE Trans. Fuzzy Syst. 22(2), 286–299 (2014)

    Article  Google Scholar 

  15. Ioannou, P., Fidan, B.: Adaptive Control Tutorial. Society for Industrial and Applied Mathematics. SIAM Books, Philadelphia (2006)

    Book  MATH  Google Scholar 

  16. Jankovic, M., Magner, S.: Disturbance attenuation in time-delay systems—a case study on engine air–fuel ratio control. In: American Control Conference (ACC), pp. 3326–3331. IEEE (2011)

  17. Jiao, X., Yang, J., Li, Q.: Adaptive control for a class of nonlinear systems with time-varying delays in state and input. J. Control Theory Appl. 9(2), 183–188 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jin, X.Z., Park, J.H.: Adaptive sliding-mode insensitive control of a class of non-ideal complex networked systems. Inf. Sci. 274, 273–285 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kamalapurkar, R., Fischer, N., Obuz, S., Dixon, W.E.: Time-varying input and state delay compensation for uncertain nonlinear systems. IEEE Trans. Autom. Control 61(3), 834–839 (2016)

    Article  MathSciNet  Google Scholar 

  20. Karafyllis, I.: Stabilization by means of approximate predictors for systems with delayed input. SIAM J. Control Optim. 49(3), 1100–1123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Karafyllis, I., Krstic, M.: Delay-robustness of linear predictor feedback without restriction on delay rate. Automatica 49(6), 1761–1767 (2013)

    Article  MathSciNet  Google Scholar 

  22. Karafyllis, I., Krstic, M., Ahmed-Ali, T., Lamnabhi-Lagarrigue, F.: Global stabilisation of nonlinear delay systems with a compact absorbing set. Int. J. Control 87(5), 1010–1027 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Khazaee, M., Markazi, A.H.: Control of input delayed pneumatic vibration isolation table using adaptive fuzzy sliding mode. Lat. Am. J. Solids Struct. 12(8), 1525–1539 (2015)

    Article  Google Scholar 

  24. Khazaee, M., Markazi, A.H., Omidi, E.: Adaptive fuzzy predictive sliding control of uncertain nonlinear systems with bound-known input delay. ISA Trans. 59, 314–324 (2015)

    Article  Google Scholar 

  25. Kim, J., Joe, H., Yu, S.C., Lee, J., Kim, M.: Time delay controller design for position control of autonomous underwater vehicle under disturbances. IEEE Trans. Ind. Electron. 63(2), 1052–1061 (2016)

    Article  Google Scholar 

  26. Kosko, B.: Fuzzy systems as universal approximators. IEEE Trans. Comput. 43, 1329–1333 (1994)

    Article  MATH  Google Scholar 

  27. Lee, T.H., Park, J.H., Kwon, O., Lee, S.: Stochastic sampled-data control for state estimation of time-varying delayed neural networks. Neural Netw. 46, 99–108 (2013)

    Article  MATH  Google Scholar 

  28. Li, H., Jing, X., Karimi, H.R.: Output-feedback-based h_ control for vehicle suspension systems with control delay. IEEE Trans. Ind. Electron. 61(1), 436–446 (2014)

    Article  Google Scholar 

  29. Li, Y., Ren, C., Tong, S.: Adaptive fuzzy backstepping output feedback control for a class of mimo time-delay nonlinear systems based on high-gain observer. Nonlinear Dyn. 67(2), 1175–1191 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Li, Z., Cao, X., Ding, N.: Adaptive fuzzy control for synchronization of nonlinear teleoperators with stochastic time-varying communication delays. IEEE Trans. Fuzzy Syst. 19(4), 745–757 (2011)

    Article  Google Scholar 

  31. Liu, Y.J., Gao, Y., Tong, S., Chen, C.: A unified approach to adaptive neural control for nonlinear discrete-time systems with nonlinear dead-zone input. IEEE Trans. Neural Netw. Learn. Syst. 27(1), 139–150 (2016)

    Article  MathSciNet  Google Scholar 

  32. Liu, Y.J., Gao, Y., Tong, S., Li, Y.: Fuzzy approximation-based adaptive backstepping optimal control for a class of nonlinear discrete-time systems with dead-zone. IEEE Trans. Fuzzy Syst. 24(1), 16–28 (2016)

    Article  Google Scholar 

  33. Liu, Y.J., Tong, S.: Adaptive nn tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input. IEEE Trans. Cybern. 45(3), 497–505 (2015)

    Article  Google Scholar 

  34. Mazenc, F., Malisoff, M., Dinh, T.N.: Robustness of nonlinear systems with respect to delay and sampling of the controls. Automatica 49(6), 1925–1931 (2013)

    Article  MathSciNet  Google Scholar 

  35. Mazenc, F., Malisoff, M., Lin, Z.: Further results on input-to-state stability for nonlinear systems with delayed feedbacks. Automatica 44(9), 2415–2421 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mazenc, F., Normand-Cyrot, D.: Reduction model approach for linear systems with sampled delayed inputs. IEEE Trans. Autom. Control 58(5), 1263–1268 (2013)

    Article  MathSciNet  Google Scholar 

  37. Na, J., Ren, X., Shang, C., Guo, Y.: Adaptive neural network predictive control for nonlinear pure feedback systems with input delay. J. Process Control 22(1), 194–206 (2012)

    Article  Google Scholar 

  38. Nafa, F., Labiod, S., Chekireb, H.: Direct adaptive fuzzy sliding mode decoupling control for a class of underactuated mechanical systems. Turk. J. Electr. Eng. Comput. Sci. 21(6), 1615–1630 (2013)

    Article  Google Scholar 

  39. Niknam, T., Khooban, M.H., Kavousifard, A., Soltanpour, M.R.: An optimal type II fuzzy sliding mode control design for a class of nonlinear systems. Nonlinear Dyn. 75(1–2), 73–83 (2014)

    Article  MathSciNet  Google Scholar 

  40. Niu, B., Li, L.: Adaptive neural network tracking control for a class of switched strict-feedback nonlinear systems with input delay. Neurocomputing 173, 2121–2128 (2016)

    Article  Google Scholar 

  41. Obuz, S., Downey, R.J., Klotz, J.R., Dixon, W.E.: Unknown time-varying input delay compensation for neuromuscular electrical stimulation. In: 2015 IEEE Conference on Control Applications (CCA), pp. 365–370. IEEE (2015)

  42. Olfati-Saber, R.: Nonlinear control of underactuated mechanical systems with application to robotics and aerospace vehicles. Ph.D. thesis, Citeseer (2000)

  43. Peng, K.C.C., Singhose, W., Frakes, D.H.: Hand-motion crane control using radio-frequency real-time location systems. IEEE/ASME Trans. Mechatron. 17(3), 464–471 (2012)

    Article  Google Scholar 

  44. Poursamad, A., Davaie-Markazi, A.H.: Robust adaptive fuzzy control of unknown chaotic systems. Appl. Soft Comput. 9(3), 970–976 (2009)

    Article  Google Scholar 

  45. Roy, S., Kar, I.N.: Adaptive robust tracking control of a class of nonlinear systems with input delay. Nonlinear Dyn. 85(2), 1127–1139 (2016)

  46. Roy, S., Nandy, S., Ray, R., Shome, S.N.: Time delay sliding mode control of nonholonomic wheeled mobile robot: experimental validation. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 2886–2892. IEEE (2014)

  47. Sharma, N., Bhasin, S., Wang, Q., Dixon, W.E.: Predictor-based control for an uncertain Euler–Lagrange system with input delay. Automatica 47(11), 2332–2342 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tong, S., Sui, S., Li, Y.: Fuzzy adaptive output feedback control of mimo nonlinear systems with partial tracking errors constrained. IEEE Trans. Fuzzy Syst. 23(4), 729–742 (2015)

    Article  Google Scholar 

  49. Tong, S., Wang, T., Li, Y., Zhang, H.: Adaptive neural network output feedback control for stochastic nonlinear systems with unknown dead-zone and unmodeled dynamics. IEEE Trans. Cybern. 44(6), 910–921 (2014)

    Article  Google Scholar 

  50. Tong, S., Zhang, L., Li, Y.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37–47 (2016)

    Article  Google Scholar 

  51. Tong, S.C., He, X.L., Zhang, H.G.: A combined backstepping and small-gain approach to robust adaptive fuzzy output feedback control. IEEE Trans. Fuzzy Syst. 17(5), 1059–1069 (2009)

    Article  Google Scholar 

  52. Wang, M., Ge, S.S., Hong, K.S.: Approximation-based adaptive tracking control of pure-feedback nonlinear systems with multiple unknown time-varying delays. IEEE Trans. Neural Netw. 21(11), 1804–1816 (2010)

    Article  Google Scholar 

  53. Yoo, H.W., Lee, Y.S., Han, S.: Constrained receding horizon controls for nonlinear time-delay systems. Nonlinear Dyn. 69(1–2), 149–158 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Yousef, H.: Design of adaptive fuzzy-based tracking control of input time delay nonlinear systems. Nonlinear Dyn. 79(1), 417–426 (2015)

    Article  MathSciNet  Google Scholar 

  55. Zhang, B., Kruszewski, A., Richard, J.P.: A novel control design for delayed teleoperation based on delay-scheduled Lyapunov–Krasovskii functionals. Int. J. Control 87(8), 1694–1706 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  56. Zhang, Z., Lu, J., Xu, S.: Tuning functions-based robust adaptive tracking control of a class of nonlinear systems with time delays. Int. J. Robust Nonlinear Control 22(14), 1631–1646 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  57. Zhou, B., Lin, Z.: Parametric Lyapunov equation approach to stabilization of discrete-time systems with input delay and saturation. IEEE Trans. Circuits Syst. I Regul. Pap. 58(11), 2741–2754 (2011)

  58. Zhu, Q., Song, A.G., Zhang, T.P., Yang, Y.Q.: Fuzzy adaptive control of delayed high order nonlinear systems. Int. J. Autom. Comput. 9(2), 191–199 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Khazaee.

Appendices

Appendix 1: Proof of Lemma 1

Proof

Select the Lyapunov candidate function for the predictor (13) as

$$\begin{aligned}&V_p \Big (e, \tilde{\mathbf {h}}, \tilde{\mathbf {q}}, \tilde{\Phi } \Big ) = \frac{1}{2} {e}^2 + \frac{1}{2 \gamma _1} {\tilde{\mathbf {h}}}^\mathrm{T} {\tilde{\mathbf {h}}}\nonumber \\&\quad +\, \frac{1}{2 \gamma _2} {\tilde{\mathbf {q}}}^\mathrm{T} {\tilde{\mathbf {q}}} + \frac{1}{2 \gamma _3} {\tilde{\Phi }}^2 \end{aligned}$$
(40)
$$\begin{aligned}&\dot{V}_p = e \ C (A - QC) {\tilde{\mathbf {x}}}_p (t+\bar{\tau }|t)\nonumber \\&\quad +\, \tilde{\mathbf {h}}^\mathrm{T} \Big [e \ CB \ {\mathbf {w}_f} (t+\bar{\tau }|t) \nonumber \\&\quad + \frac{1}{\gamma _1} \dot{\tilde{\mathbf {h}}} \Big ] + \tilde{\mathbf {q}}^\mathrm{T} \Big [e \ CB \ {\mathbf {w}_g} (t+\bar{\tau }|t) u(t) \nonumber \\&\quad + \frac{1}{\gamma _2} \dot{\tilde{\mathbf {q}}} \Big ] - e\ CB \ v_\mathrm{rb} + e \ CB \ {\varepsilon }_p + \frac{1}{\gamma _3} {\tilde{\Phi }} \dot{\tilde{\Phi }} \end{aligned}$$
(41)

By using adaptation algorithms (14), (15), and (17) and the robust term Definition (16), (41) is simplified as below.

$$\begin{aligned} \Rightarrow \dot{V}_p = e \ C (A - QC) {\tilde{\mathbf {x}}}_p (t+\bar{\tau }|t) + e \ CB \ {\varepsilon }_p. \end{aligned}$$

By using Youngs inequality \(ab \le {\Big (a^2 + {k_1}^2 b^2 \Big )}/{2 k_1}, k_1 > 0 \)

$$\begin{aligned} k_1= & {} {\lambda }_{\min }[QC-A] \Rightarrow (CB{\varepsilon }_p)e\\\le & {} \frac{1}{2 {\lambda }_{\min }[QC-A]} CB{(CB)}^\mathrm{T} {{\varepsilon }_p}^2\\&+\frac{1}{2} {\lambda }_{\min }[QC-A] e^2\\\Rightarrow & {} {\dot{V}_p} \le - \frac{1}{2} {\lambda }_{\min }[QC - A] e^2\\&+ \frac{1}{2 {\lambda }_{\min }[QC-A]} CB{(CB)}^\mathrm{T} {{\varepsilon }_p}^2. \end{aligned}$$

Then, it can be deduced that outside of a bounded region, the Lyapunov derivative \(\dot{V}_p\) is negative semi-definite as below.

$$\begin{aligned}&\frac{1}{({\lambda }_{\min }[QC-A])^2} CB{(CB)}^\mathrm{T} (C^\mathrm{T}C)^{-1}{{\varepsilon }_p}^2\\&\quad = |x_B| \le |{\tilde{\mathbf {x}}}_p| \Rightarrow {\dot{V}_p} \le 0 \end{aligned}$$

Thus, based on [15] because \(V_p\) is positive definite, \(\dot{V}_p\) is semi-negative definite outside a bounded region, and a class \(\mathcal {K}\) function \(\sigma (x)\) exists such that \(\dot{V}_p \le -\sigma ({\tilde{\mathbf {x}}}_p)\), then \({\tilde{\mathbf {x}}}_p(t)\) and the fuzzy output vector errors \(\tilde{\mathbf {h}}\), \(\tilde{\mathbf {q}}\), and \(\tilde{\Phi }\) are uniformly ultimately bounded.

Appendix 2: Proof of Lemma 2

Select the Lyapunov candidate function for the controller as

$$\begin{aligned}&{V_c}\left( {s\left( t \right) ,s\left( {t - \bar{\tau }} \right) ,\tilde{\mathbf {k}}{\text {,}}\tilde{\Psi }} \right) = \frac{1}{2}{s^2}(t)\nonumber \\&\quad + \int _{t - \bar{\tau }}^t {\left| g(\mathbf {x}) \right| {s^2}(r) dr} + \frac{1}{{2{\alpha _1}}}{{\tilde{\mathbf {k}}}^\mathrm{T}}{\tilde{\mathbf {k}}} + \frac{1}{{2{\alpha _2}}}{\tilde{\Psi } ^2}. \end{aligned}$$
(42)

Then, by time derivation of (42) with noting that \(\bar{\tau }\) is constant, \(\dot{V}_c\) is derived as

$$\begin{aligned}&\Rightarrow {\dot{V}_c} = s (t)\dot{s} (t)\\&\quad + \left[ {\left| g( \mathbf {x} (t)) \right| {s^2}(t) - \left| g(\mathbf {x} (t - \bar{\tau })) \right| {s^2}({t - \bar{\tau }})} \right] \\&\quad +\frac{1}{{{\alpha _1}}}{{\tilde{\mathbf {k}}}^\mathrm{T}}{\dot{\tilde{\mathbf {k}} }} + \frac{1}{{{\alpha _2}}}\tilde{\Psi } \dot{\tilde{\Psi }}. \end{aligned}$$

After implementing (6), (7), and (32), the derivative is rewritten as

$$\begin{aligned}&\Rightarrow {\dot{V}_c} = s (t) g(\mathbf {x} (t)) \left[ {u_\mathrm{eq}}^* - {\hat{u}}_\mathrm{fuz} - u_\mathrm{rb} \right] \\&\quad + \left[ {\left| g( \mathbf {x} (t)) \right| {s^2}(t) - \left| g(\mathbf {x} (t - \bar{\tau })) \right| {s^2}({t - \bar{\tau }})} \right] \\&\quad +\frac{1}{{{\alpha _1}}}{\tilde{ \mathbf {k}}^\mathrm{T}}{\dot{\tilde{\mathbf {k}}}} + \frac{1}{{{\alpha _2}}}\tilde{\Psi } \dot{\tilde{\Psi }} \end{aligned}$$

from the adaptive law (26) and the robust term (29), it is concluded that

$$\begin{aligned}&{\dot{V}_{c}} = {\tilde{\mathbf {k}}}^\mathrm{T} \left[ s(t) {{\mathbf {q}}}^\mathrm{T}{{\mathbf {w}}_g} {{\mathbf {w}}} + \frac{1}{{{\alpha _1}}}{\dot{\tilde{\mathbf {k}}}} \right] + \left| {{\mathbf {q}}}^\mathrm{T}{{\mathbf {w}}_g ({\mathbf {x} (t)}}) \right| {s^2}(t )\\&\quad + \left| {{\mathbf {q}}}^\mathrm{T}{{\mathbf {w}}_g ({\mathbf {x} ({t - \bar{\tau }})})} \right| {s^2}({t - \bar{\tau }})\\&\quad -\, s(t) \left| {{\mathbf {q}}}^\mathrm{T}{{\mathbf {w}}_g ({\mathbf {x} (t)})} \right| \Big ( \tilde{\Psi } \text {sgn}(s(t)) + s(t) \Big ) + \frac{1}{{{\alpha _2}}}\tilde{\Psi } \dot{\tilde{\Psi }}, \end{aligned}$$

by using the adaptive law (30) and the fuzzy approximation (10), the derivative is simplified as follows:

$$\begin{aligned} \Rightarrow {\dot{V}_c} = - \left| {{\mathbf {q}}}^\mathrm{T}{{\mathbf {w}}_g ({\mathbf {x} ({t - \bar{\tau }})})} \right| {s^2}({t - \bar{\tau }}). \end{aligned}$$

\(\dot{V}_c\) is semi-negative definite, then the system is stable and s, \(\tilde{\mathbf {k}}\), and \(\tilde{\Psi }\) will remain bounded. Finally, because the overall Lyapunov function of system (\(V = V_c + V_p\)) has negative semi-definite derivative for \(|x_B| \le |{\tilde{\mathbf {x}}}_p|\), and with respect to the previous stability results for the predictor and controller, the system is uniformly ultimately bounded.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khazaee, M., Markazi, A.H.D., Rizi, S.T. et al. Adaptive fuzzy sliding mode control of input-delayed uncertain nonlinear systems through output-feedback. Nonlinear Dyn 87, 1943–1956 (2017). https://doi.org/10.1007/s11071-016-3164-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-016-3164-8

Keywords

Navigation