Skip to main content

Advertisement

Log in

Morphometric and sediment source characterization of the Alaknanda river basin, headwaters of river Ganga, India

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

Erosion and the resulting sediment load is a silent natural hazard that can affect the hydraulic processes in a fluvial system. The physical erosion rate in the Alaknanda basin is five times higher than the global average, and Alaknanda River is a major supplier of sediments to the Ganga River. Anthropogenic intrusion in the form of construction of dams and reservoirs is influencing the natural landscape of the basin. Thus, it is necessary to prioritize erosion prone areas, understand the weathering intensity and identify source bed rocks contributing to the sediment load. The present study displays a combined approach of morphometry and geochemistry for erosion risk estimation. Nineteen morphometric parameters were evaluated for Alaknanda main channel, Mandakini, Pinder, Nandakini, Birahi Ganga and Dhauli Ganga sub-catchments. Suspended sediment samples collected during non-monsoon and monsoon seasons of the year 2014 were analyzed and quantified for sediment load, grain size distribution, clay mineralogy and rare earth elements composition. The results showed the dominance of structural, lithological and climatic control on the erosion processes. The eastern side of the Alaknanda basin was found to be more vulnerable to fluvial erosion. The mean grain size varied from 8.9 to 56.3 μm and 25.3 to 87.3 μm in the post-monsoon and monsoon season, respectively. The clay mineral assemblages, low values of kaolinite/illite ratio, illite chemistry index and illite crystallinity  index along with inconsistent Eu and Ce anomaly indicate that physical and chemical weathering of felsic, mafic and carbonate rocks contributes to high sediment load carried by the Alaknanda River.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source: Bickle et al. 2003)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ali KF, de-Boer DH (2008) Factors controlling specific sediment yield in the upper Indus River basin, northern Pakistan. Hydrol Process 22:3102–3114

    Article  Google Scholar 

  • Bagnold RA (1960) Sediment discharge and stream power: a preliminary announcement. US Geol Surv Circ 421:1–23

    Google Scholar 

  • Bagnold RA (1977) Bed load transport by natural rivers. Water Resour Res 132:303–312

    Article  Google Scholar 

  • Bhandari N, Shukla PN, Azmi RJ (1992) Positive europium anomaly at the permotriassic boundary, Spiti, India. Geophys Res Lett 19:1531–1534

    Article  Google Scholar 

  • Bickle MJ, Bunbury JM, Chapman HJ, Harris NBW, Fairchild IJ, Ahmad T (2003) Fluxes of Sr into headwaters of the Ganges. Geochim Cosmochim Acta 67:2567–2584

    Article  Google Scholar 

  • Chakrapani GJ (2005) Major and trace element geochemistry in upper Ganga river in the Himalayas, India. Environ Geol 48(2):189–201

    Article  Google Scholar 

  • Chakrapani GJ, Saini RK (2009) Temporal and spatial variations in water discharge and sediment load in the Alaknanda and Bhagirathi Rivers in Himalaya, India. J Asian Earth Sci 35:545–553

    Article  Google Scholar 

  • Chakrapani GJ, Saini RK, Yadav SK (2009) Chemical weathering rates in the Alaknanda–Bhagirathi river basins in Himalayas, India. J Asian Earth Sci 34:347–362

    Article  Google Scholar 

  • Chamley H (1989) Clay sedimentology. Springer, New York, p 623

    Book  Google Scholar 

  • Chopra S, Kumar V, Suthar A, Kumar P (2012) Modeling of strong ground motions for 1991 Uttarkashi, 1999 Chamoli earthquakes, and a hypothetical great earthquake in Garhwal–Kumaun Himalaya. Nat Hazards 64:1141–1159

    Article  Google Scholar 

  • CWC (2007) Report of working group to advise WQAA on the minimum flows in the rivers. Central Water Commission, Ministry of Water Resources, New Delhi

    Google Scholar 

  • Das AK, Mukherjee S (2005) Drainage morphometry using satellite data and GIS in Raigad district, Maharashtra. J Indian Soc Remote Sens 65:577–586

    Google Scholar 

  • de Tapia EM (2012) Silent hazards, invisible risks: prehispanic erosion in the Teotihuacan Valley, Central Mexico. In: Copper J, Sheets P (eds) Surviving sudden environmental change: understanding hazards, mitigating impacts, avoiding disasters. University Press of Colorado, Boulder, pp 143–165

    Google Scholar 

  • Dosseto A, Vigier N, Joannes-Boyau R, Moffat I, Singh T, Srivastava P (2015) Rapid response of silicate weathering rates to climate change in the Himalaya. Geochem Perspect Lett 1:10–19

    Article  Google Scholar 

  • Ehrmann W (1998) Implications of late Eocene to early Miocene clay mineral assemblages in McMurdo Sound (Ross Sea, Antarctica) on paleoclimate and ice dynamics. Palaeogeogr Palaeoclimatol Palaeoecol 139:213–231

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos river bar: a study in the significance of grain size parameters. J Sediment Petrol 27:3–26

    Article  Google Scholar 

  • Frank F, McArdell BW, Huggel C, Vieli A (2015) The importance of entrainment and bulking on debris flow runout modeling: examples from the Swiss Alps. Nat Hazards Earth Syst Sci 15(11):2569–2583

    Article  Google Scholar 

  • Galy A, France-Lanord C (2001) Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology 29(1):23–26

    Article  Google Scholar 

  • Garzanti E, Ando S, France-lanord C, Censi P, Vignola P, Galy V, Lupker M (2011) Mineralogical and chemical variability of fluvial sediments 2. Suspended-load silt (Ganga–Brahmaputra, Bangladesh). Earth Planet Sci Lett 302:107–120

    Article  Google Scholar 

  • Hannigan R, Dorval E, Jones C (2010) The rare earth element chemistry of estuarine surface sediments in the Chesapeake Bay. Chem Geol 272:20–30

    Article  Google Scholar 

  • He M, Zheng H, Huang X, Jia J, Li L (2013) Yangtze River sediments from source to sink traced with clay mineralogy. J Asian Earth Sci 69:60–69

    Article  Google Scholar 

  • Henderson P (2013) Rare earth element geochemistry, vol 2. Elsevier, Amsterdam, p 510

    Google Scholar 

  • Horton RE (1945) Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol Soc Am Bull 56:275–370

    Article  Google Scholar 

  • Khanna PP, Saini NK, Mukherjee PK, Purohit KK (2009) An appraisal of ICP-MS technique for determination of REEs: long term QC assessment of silicate rock analysis. Himalayan Geol 30(1):95–99

    Google Scholar 

  • Krumm S, Buggisch W (1991) Sample preparation effects on illite crystallinity measurements: grain size gradation and particle orientation. J Metamorph Geol 9:671–677

    Article  Google Scholar 

  • Laveuf C, Cornu S (2009) A review on the potentiality of rare earth elements to trace pedogenetic processes. Geoderma 154(1):1–12

    Article  Google Scholar 

  • Liao KH (2014) From flood control to flood adaptation: a case study on the Lower Green River Valley and the City of Kent in King County, Washington. Nat Hazards 71(1):723–750

    Article  Google Scholar 

  • Liu Z, Colin C, Huang W, Le Phon K, Tong S, Chen Z, Trentesaux A (2007) Climatic and tectonic controls on weathering in south China and Indochina Peninsula: clay mineralogical and geochemical investigations from the Pearl, Red, and Mekong drainage basins. Geochem Geophys Geosyst 8(5):1–18

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochem Geophys Geosyst 2:1021–1024

    Article  Google Scholar 

  • Meraj G, Romshoo SA, Yousuf AR, Altaf S, Altaf F (2015) Assessing the influence of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir Himalaya. Nat Hazards 77(1):153–175

    Article  Google Scholar 

  • Miller VC (1953) A quantitative geomorphologic study of drainage basin characteristics in the Clinch Mountain Area. Virginia and Tennessee, Project NR 389042, Technical Report 3. Columbia University Department of Geology, ONR Geography Branch, New York

  • Muller G (1967) Sedimentary petrology. In: Methods in sedimentary petrology (Schmincke HU, Trans). Hafuer Publishing, New York, p 283f

  • Nagarajan R, Madhavaraju J, Armstrong-Altrin JS, Nagendra R (2011) Geochemistry of Neoproterozoic limestones of the Shahabad Formation, Bhima Basin, Karnataka, southern India. Geosci J 15:9–25

    Article  Google Scholar 

  • Palmer MR (1985) Rare earth elements in foraminifera tests. Earth Planet Sci Lett 73:285–298

    Article  Google Scholar 

  • Pandey SK, Singh AK, Hasnain SI (2002) Grain-size distribution, morphoscopy and elemental chemistry of suspended sediments of Pindari Glacier, Kumaon Himalaya, India. Hydrol Sci J 472:213–226

    Article  Google Scholar 

  • Panwar S, Chakrapani GJ (2016) Seasonal variability of grain size, weathering intensity, and provenance of channel sediments in the Alaknanda River Basin, an upstream of river Ganga, India. Environ Earth Sci 75(12):998

    Article  Google Scholar 

  • Panwar S, Khan MYA, Chakrapani GJ (2016) Grain size characteristics and provenance determination of sediment and dissolved load of Alaknanda River, Garhwal Himalayas, India. Environ Earth Sci 75:91

    Article  Google Scholar 

  • Petschick R, Kuhn G, Gingele F (1996) Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography. Mar Geol 130:203–229

    Article  Google Scholar 

  • Portenga EW, Bierman PR (2011) Understanding Earth’s eroding surface with 10 Be. GSA Today 21(8):4–10

    Article  Google Scholar 

  • Pourret O, Davranche M, Gruau G, Dia A (2008) New insights into Ce anomalies in organic-rich alkaline waters. Chem Geol 251:120–127

    Article  Google Scholar 

  • Ramesh R, Ramanathan AL, Ramesh S, Purvaja R, Subramanian V (2000) Distribution of rare earth elements and heavy metals in the surficial sediments of the Himalayan river system. Geochem J 34:295–319

    Article  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Sanda R, Ştefan B, Danut P, Loan F, Luliu V, Sorin F (2015) Application of landslide hazard scenarios at annual scale in the Niraj River basin (Transylvania Depression, Romania). Nat Hazards 77(3):1573–1592

    Article  Google Scholar 

  • Sati SP, Sundriyal YP, Rawat GS (2007) Geomorphic indicators of neotectonic activity around Srinagar (Alaknanda basin), Uttarakhand. Curr Sci 92(6):824–829

    Google Scholar 

  • Schumms SA (1956) Evolution of drainage systems and slopes in Badlands at Perth Amboy, New Jersey. Bull Geol Soc Am 67:597–646

    Article  Google Scholar 

  • Shukla D, Dubey C, Ningreichon A, Singh R, Mishra B, Singh S (2014) GIS-based morphotectonic studies of Alaknanda river basin: a precursor for hazard zonation. Nat Hazards 71(3):1433–1452

    Article  Google Scholar 

  • Singh P (2010) Geochemistry and provenance of stream sediments of the Ganga River and its major tributaries in the Himalayan region, India. Chem Geol 269:220–236

    Article  Google Scholar 

  • Singh AK, Hasnain SI (1998) Major ion chemistry and weathering control in a high altitude basin: Alaknanda River, Garhwal Himalaya, India. Hydrol Sci J 436:825–843

    Article  Google Scholar 

  • Singh P, Rajamani V (2001) REE geochemistry of recent clastic sediments from the Kaveri floodplains, Southern India: implication to source area weathering and sedimentary processes. Geochim Cosmochim Acta 65(18):3093–3108

    Article  Google Scholar 

  • Sklar LS, Dietrich WE (2001) Sediment and rock strength controls on river incision into bedrock. Geology 29:1087–1090

    Article  Google Scholar 

  • Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655–668

    Article  Google Scholar 

  • Strahler A (1964) Quantitative geomorphology of drainage basins and channel networks. In: Chow VT (ed) Handbook of applied hydrology, section 4–11. McGraw-Hill, New York

    Google Scholar 

  • Syvitski JP, Peckham SD, Hilberman R, Mulder T (2003) Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sed Geol 162(1):5–24

    Article  Google Scholar 

  • Syvitski JPM, Vorosmarty CJ, Kettner AJ, Green P (2005) Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308:376–380

    Article  Google Scholar 

  • Thompson J, Sattar AM, Gharabaghi B, Warner RC (2016) Event-based total suspended sediment particle size distribution model. J Hydrol 536:236–246

    Article  Google Scholar 

  • Valdiya KS (1980) Geology of kumaun lesser Himalaya. Dehradun, WIHG, p 291

    Google Scholar 

  • Vijith HR, Satheesh R (2006) GIS based morphometric analysis of two major upland sub-watersheds of Meenachil River in Kerala. J Indian Soc Remote Sens 34(2):181–185

    Article  Google Scholar 

  • Walling DE, Moorehead PW (1989) The particle size characteristics of fluvial suspended sediment: an overview. Hydrobiologia 176(177):125–149

    Article  Google Scholar 

  • Wang YG, Wang SS, Dunlop J (2015) Statistical modelling and power analysis for detecting trends in total suspended sediment loads. J Hydrol 520:439–447

    Article  Google Scholar 

  • Wasson RJ (2003) A sediment budget for the Ganga–Brahmaputra catchment. Curr Sci 84(8):1041–1047

    Google Scholar 

  • Whipple KX, Hancock GS, Anderson RS (2000) River incision into bedrock: mechanics and relative efficacy of plucking, abrasion and cavitation. GSA Bulletin 112(3):1–19

    Article  Google Scholar 

  • Wiggering H, Beukes NJ (1990) Petrography and Geochemistry of a 2000–2200-Ma-old hematitic paleo? alteration profile on Ongeluk basalt of the Transvaal Supergroup, Griqualand West, South Africa. Precambr Res 46:241–258

    Article  Google Scholar 

  • Xu J (2002) Implication of relationships among suspended sediment size, water discharge and suspended sediment concentration: the Yellow River basin, China. Catena 49:289–307

    Article  Google Scholar 

  • Xu Y, Song J, Duan L, Li X, Yuan H, Li N, Zhang P, Zhang Y, Xu S, Zhang M, Wu X, Yin X (2012) Fraction characteristics of rare earth elements in the surface sediment of Bohai Bay, North China. Environ Monit Assess 184:7275–7292

    Article  Google Scholar 

  • Yang SY, Jung HS, Choi MS, Li CX (2002) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sci Lett 201(2):407–419

    Article  Google Scholar 

  • Youssef AM, Sefry SA, Pradhan B, Alfadail EA (2016) Analysis on causes of flash flood in Jeddah city (Kingdom of Saudi Arabia) of 2009 and 2011 using multi-sensor remote sensing data and GIS. Geomat Nat Hazards Risk 7(3):1018–1042

    Article  Google Scholar 

  • Zhang C, Wang L, Zhang S, Li X (1998) Geochemistry of rare earth elements in the mainstream of the Yangtze River, China. Appl Geochem 13:451–462

    Article  Google Scholar 

  • Zhang Q, Xu C, Becker S, Jiang T (2006) Sediment and runoff changes in the Yangtze River basin during past 50 years. J Hydrol 331:511–523

    Article  Google Scholar 

Download references

Acknowledgements

SP acknowledges University Grant Commission, New Delhi, for a research fellowship. Special thanks to Yawar Ali Khan, Dhruv Gaur and Shaumik Daityari for help in field work. Thanks to Ajit Kumar Behera and Nirmit Sah. We gratefully acknowledge anonymous reviewers and the Editor for the constructive and insightful review that helped improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Panwar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panwar, S., Agarwal, V. & Chakrapani, G.J. Morphometric and sediment source characterization of the Alaknanda river basin, headwaters of river Ganga, India. Nat Hazards 87, 1649–1671 (2017). https://doi.org/10.1007/s11069-017-2838-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-017-2838-y

Keywords

Navigation