Skip to main content

Advertisement

Log in

Numerical simulation of erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean tsunami

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

A case study was conducted for the Thailand Khao Lak coast using a forward numerical model to understand uncertainties associated with interpreting tsunami deposits and relating them to their tsunami sources. We examined possible effects of the characteristics of tsunami source, multiple waves, sediment supply and local land usages. Numerical results showed that tsunami-deposit extent and thickness could be indicative of the slip value in the source earthquake near the surveyed coastal locations, provided that the sediment supply is unlimited and all the deposits are well preserved. Deposit thickness was found to be largely controlled by the local topography and could be easily modified by backwash flows or subsequent tsunami flows. Between deposit extent and deposit thickness, using deposit extent to interpret the characteristics of a tsunami source is preferable. The changing of land usages between two tsunami events could be another important factor that can significantly alter deposit thickness. There is a need to develop inversion models based on tsunami heights and/or run-up data for studying paleotsunamis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abe K (1973) Tsunami and mechanism of great earthquakes. Phys Earth Planet Inter 7(2):143–153

    Article  Google Scholar 

  • Abe K (1979) Size of great earthquakes of 1837–1974 inferred from tsunami data. J Geophys Res 84(B4):1561–1568. doi:10.1029/JB084iB04p01561

    Article  Google Scholar 

  • Abe T, Goto K, Sugawara D (2012) Relationship between the maximum extent of tsunami sand and the inundation limit of the 2011 Tohoku-oki tsunami on the Sendai Plain, Japan. Sediment Geol 282:142–150

    Article  Google Scholar 

  • Ammon CJ, Ji C, Thio HK, Robinson D, Ni S, Hjorleifsdottir V, Kanamori H, Lay T, Das S, Helmberger D, Ichinose G, Polet J, Wald D (2005) Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308(5725):1133–1139

    Article  Google Scholar 

  • Apotsos A, Gelfenbaum G, Jaffe B (2011a) Process-based modeling of tsunami inundation and sediment transport. J Geophys Res 116:20. doi:10.1029/2010JF001797

    Article  Google Scholar 

  • Apotsos A, Gelfenbaum G, Jaffe B, Watt S, Peck B, Buckley M, Stevens A (2011b) Tsunami inundation and sediment transport in a sediment-limited embayment on American Samoa. Earth-Sci Rev 107(1–2):1–11. doi:10.1016/j.earscirev.2010.11.001

    Article  Google Scholar 

  • Arcement GJJ, Schneider VR (1989) Guide for selecting manning’s roughness coefficient for natural channels and floodplains. Water Supply Paper 2339. Washington, DC

  • Banerjee P, Pollitz F, Nagarajan B, Bürgmann R (2007) Coseismic slip distributions of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull Seismol Soc Am 97(1 A Suppl):S86–S102

    Article  Google Scholar 

  • Bourgeois J (2009) Geologic effects and records of tsunamis. In: Bernard EN, Robinson AR (eds) The sea: tsunamis, vol 15. Harvard University Press, London, pp 53–91

    Google Scholar 

  • Bourgeois J, Pinegina TK, Ponomareva V, Zaretskaia N (2006) Holocene tsunamis in the southwestern Bering Sea, Russian Far East, and their tectonic implications. Bull Geol Soc Am 118(3–4):449–463

    Article  Google Scholar 

  • Chagué-Goff C, Andrew A, Szczuciński W, Goff J, Nishimura Y (2012) Geochemical signatures up to the maximum inundation of the 2011 Tohoku-oki tsunami—implications for the 869AD Jogan and other palaeotsunamis. Sediment Geol 282:65–77

    Article  Google Scholar 

  • Chlieh M, Avouac JP, Hjorleifsdottir V, Song TRA, Ji C, Sieh K, Sladen A, Hebert H, Prawirodirdjo L, Bock Y, Galetzka J (2007) Coseismic slip and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004. Bull Seismol Soc Am 97(1 A Suppl):S152–S173

    Article  Google Scholar 

  • CRISP (2004) IKONOS images of Aceh Besar district, Aceh, Sumatra, Indonesia, captured on 29 December 2004. Centre for Remote Imaging, Sensing and Processing. http://www.crisp.nus.edu.sg/tsunami/tsunami.html. Accessed 16 March 2013

  • Dawson AG, Shi S (2000) Tsunami deposits. Pure Appl Geophys 157(6–8):875–897

    Article  Google Scholar 

  • Dawson AG, Shi S, Dawson S, Takahashi T, Shuto N (1996) Coastal sedimentation associated with the June 2nd and 3rd, 1994 tsunami in Rajegwesi, Java. Quat Sci Rev 15(8–9):901–912

    Article  Google Scholar 

  • Di Geronimo I, Choowong M, Phantuwongraj S (2009) Geomorphology and superficial bottom sediments of Khao Lak Coastal Area (SW Thailand). Pol J Environ Stud 18(1):111–121

    Google Scholar 

  • Fujii Y, Satake K (2007) Tsunami source of the 2004 Sumatra–Andaman earthquake inferred from tide gauge and satellite data. Bull Seismol Soc Am 97(1 A Suppl):S192–S207

    Article  Google Scholar 

  • Fujino S, Naruse H, Matsumoto D, Sakakura N, Suphawajruksakul A, Jarupongsakul T (2010) Detailed measurements of thickness and grain size of a widespread onshore tsunami deposit in Phang-nga Province, southwestern Thailand. Isl Arc 19(3):389–398

    Article  Google Scholar 

  • Galappatti G, Vreugdenhil CB (1985) A depth-integrated model for suspended sediment transport. J Hydraul Res 23:359–377. doi:10.1080/00221688509499345

    Article  Google Scholar 

  • Geist EL (1998) Local tsunamis and earthquake source parameters. Adv Geophys 39:117–209

  • Geist EL, Dmowska R (1999) Local tsunamis and distributed slip at the source. Pure Appl Geophys 154(3–4):485–512

    Article  Google Scholar 

  • Gelfenbaum G, Jaffe B (2003) Erosion and sedimentation from the 17 July, 1998 Papua New Guinea tsunami. Pure Appl Geophys 160(10–11):1969–1999

    Article  Google Scholar 

  • Goto K, Imamura F (2007) Numerical models for sediment transport by tsunamis. Quat Res 46(6):463–475

    Article  Google Scholar 

  • Goto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczuciński W, Tappin DR, Witter RC, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol 290(1–4):46–50

    Article  Google Scholar 

  • Goto K, Chagué-Goff C, Goff J, Jaffe B (2012) The future of tsunami research following the 2011 Tohoku-oki event. Sediment Geol 282:1–13

    Article  Google Scholar 

  • Grilli S, Ioualalen M, Asavanant J, Shi F, Kirby J, Watts P (2007) Source constraints and model simulation of the December 26, 2004, Indian Ocean tsunami. J Waterw Port Coast Ocean Eng 133(6):414–428. doi:10.1061/(asce)0733-950x(2007)133:6(414

    Article  Google Scholar 

  • Hori K, Kuzumoto R, Hirouchi D, Umitsu M, Janjirawuttikul N, Patanakanog B (2007) Horizontal and vertical variation of 2004 Indian tsunami deposits: an example of two transects along the western coast of Thailand. Mar Geol 239(3–4):163–172

    Article  Google Scholar 

  • Jaffe BE, Gelfenbuam G (2007) A simple model for calculating tsunami flow speed from tsunami deposits. Sediment Geol 200(3–4):347–361

    Article  Google Scholar 

  • Johnson JM, Satake K (1993) Source parameters of the 1957 Aleutian earthquake from tsunami waveforms. Geophys Res Lett 20(14):1487–1490. doi:10.1029/93gl01217

    Article  Google Scholar 

  • Kajiura K (1972) The directivity of energy radiation of the tsunami generated in the vicinity of a continental shelf. J Oceanogr Soc Jpn 28(6):260–277

    Article  Google Scholar 

  • Kihara N, Matsuyama M (2010) Numerical simulations of sediment transport induced by the 2004 Indian Ocean tsunami near Kirinda Port in Sri Lanka. In: Proceedings of 32nd conference on coastal engineering, Shanghai, China

  • Koshimura S, Oie T, Yanagisawa H, Imamura F (2009) Developing fragility functions for tsunami damage estimation using numerical model and post-tsunami data from Banda Aceh, Indonesia. Coast Eng J 51(3):243–273

    Article  Google Scholar 

  • Li LL, Huang ZH (2013) Modeling the change of beach profile under tsunami waves: a comparison of selected sediment transport models. J Earthq Tsunami 7(1):1350001. doi:10.1142/S1793431113500012

  • Li LL, Qiu Q, Huang ZH (2012) Numerical modeling of the morphological change in Lhok Nga, west Banda Aceh, during the 2004 Indian Ocean tsunami: understanding tsunami deposits using a forward modeling method. Nat Hazards 64(2):1549–1574

    Article  Google Scholar 

  • Liu PLF, Yong-Sik C, Briggs MJ, Kanoglu U, Synolakis CE (1995) Runup of solitary waves on a circular island. J Fluid Mech 302:259–285

    Article  Google Scholar 

  • MacInnes BT, Bourgeois J, Pinegina TK, Kravchunovskaya EA (2009) Tsunami geomorphology: erosion and deposition from the 15 November 2006 Kuril Island tsunami. Geology 37(11):995–998

    Article  Google Scholar 

  • Macinnes BT, Weiss R, Bourgeois J, Pinegina TK (2010) Slip distribution of the 1952 Kamchatka great earthquake based on near-field tsunami deposits and historical records. Bull Seismol Soc Am 100(4):1695–1709

    Article  Google Scholar 

  • Martin ME, Weiss R, Bourgeois J, Pinegina TK, Houston H, Titov VV (2008) Combining constraints from tsunami modeling and sedimentology to untangle the 1969 Ozernoi and 1971 Kamchatskii tsunamis. Geophys Res Lett 35(1):L01610. doi:10.1029/2007gl032349

    Article  Google Scholar 

  • Meltzner AJ, Sieh K, Abrams M, Agnew DC, Hudnut KW, Avouac J-P, Natawidjaja DH (2006) Uplift and subsidence associated with the great Aceh–Andaman earthquake of 2004. J Geophys Res 111(B2):B02407. doi:10.1029/2005jb003891

    Article  Google Scholar 

  • Moore A, Nishimura Y, Gelfenbaum G, Kamataki T, Triyono R (2006) Sedimentary deposits of the 26 December 2004 tsunami on the northwest coast of Aceh, Indonesia. Earth Planets Space 58(2):253–258

    Article  Google Scholar 

  • Moore AL, McAdoo BG, Ruffman A (2007) Landward fining from multiple sources in a sand sheet deposited by the 1929 Grand Banks tsunami, Newfoundland. Sediment Geol 200(3–4):336–346

    Article  Google Scholar 

  • Morton RA, Gelfenbaum G, Jaffe BE (2007) Physical criteria for distinguishing sandy tsunami and storm deposits using modern examples. Sediment Geol 200(3–4):184–207

    Article  Google Scholar 

  • Nanayama F, Satake K, Furukawa R, Shimokawa K, Atwater BF, Shigeno K, Yamaki S (2003) Unusually large earthquakes inferred from tsunami deposits along the Kuril trench. Nature 424(6949):660–663

    Article  Google Scholar 

  • Nelson AR, Kelsey HM, Witter RC (2006) Great earthquakes of variable magnitude at the Cascadia subduction zone. Quat Res 65(3):354–365

    Article  Google Scholar 

  • Okada Y (1985) Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 75:1135–1154

    Google Scholar 

  • Okal EA (1988) Seismic parameters controlling far-field tsunami amplitudes: a review. Nat Hazards 1(1):67–96

    Article  Google Scholar 

  • Okal EA (2008) Excitation of tsunamis by earthquakes. In: Bernard EN, Robinson AR (ed) The sea: ideas and observations on process in the study of the seas, vol 15. Harvard University Press, pp 137–177

  • Okal EA, Synolakis CE (2008) Far-field tsunami hazard from mega-thrust earthquakes in the Indian Ocean. Geophys J Int 172(3):995–1015

    Article  Google Scholar 

  • Okal EA, Titov VV (2007) M TSU: recovering seismic moments from tsunameter records. Pure Appl Geophys 164(2–3):355–378

    Article  Google Scholar 

  • Peters R, Jaffe B, Gelfenbaum G (2007) Distribution and sedimentary characteristics of tsunami deposits along the Cascadia margin of western North America. Sediment Geol 200(3–4):372–386

    Article  Google Scholar 

  • Piatanesi A, Lorito S (2007) Rupture process of the 2004 Sumatra–Andaman earthquake from tsunami waveform inversion. Bull Seismol Soc Am 97(1 A Suppl):S223–S231

    Article  Google Scholar 

  • Piatanesi A, Tinti S, Gavagni I (1996) The slip distribution of the 1992 Nicaragua earthquake from tsunami run-up data. Geophys Res Lett 23(1):37–40

    Article  Google Scholar 

  • Pires C, Miranda PMA (2001) Tsunami waveform inversion by adjoint methods. J Geophys Res C: Oceans 106(C9):19773–19796

    Article  Google Scholar 

  • Rajendran CP, Rajendran K, Anu R, Earnest A, Machado T, Mohan PM, Freymueller J (2007) Crustal deformation and seismic history associated with the 2004 Indian Ocean earthquake: a perspective from the Andaman–Nicobar Islands. Bull Seismol Soc Am 97(1 A Suppl):S174–S191

    Article  Google Scholar 

  • Richmond B, Szczuciński W, Chagué-Goff C, Goto K, Sugawara D, Witter R, Tappin DR, Jaffe B, Fujino S, Nishimura Y, Goff J (2012) Erosion, deposition and landscape change on the Sendai coastal plain, Japan, resulting from the March 11, 2011 Tohoku-oki tsunami. Sediment Geol 282:27–39

    Article  Google Scholar 

  • Roelvink D, Reniers A, Dongeren Av, Vries JvTd, Lescinski J, McCall R (2008) XBeach model description and manual. XBeach Webpage hosted by Deltars. http://oss.deltares.nl/web/xbeach/documentation. Accessed 16 June 2012

  • Satake K (1987) Inversion of tsunami waveforms for the estimation of a fault heterogeneity: method and numerical experiments. J Phys Earth 35:241–254

    Article  Google Scholar 

  • Satake K (1988) Effects of bathymetry on tsunami propagation: application of ray tracing to tsunamis. Pure Appl Geophys 126(1):27–36

    Article  Google Scholar 

  • Satake K, Nanayama F, Yamaki S, Tanioka Y, Hirata K (2005) Variability among tsunami sources in the 17th–21st centuries along the Southern Kuril Trench. In: Satake K (ed) Tsunamis, vol 23. Advances in natural and technological hazards research. Springer, Netherlands, pp 157–170. doi:10.1007/1-4020-3331-1_9

  • Sato H, Shimamoto T, Tsutsumi A, Kawamoto E (1995) Onshore tsunami deposits caused by the 1993 Southwest Hokkaido and 1983 Japan Sea earthquakes. Pure Appl Geophys 144(3–4):693–717

    Article  Google Scholar 

  • Shi S, Dawson AG, Smith DE (1995) Coastal sedimentation associated with the December 12th, 1992 tsunami in Flores, Indonesia. Pure Appl Geophys 144(3–4):525–536

    Article  Google Scholar 

  • Smith DE, Foster IDL, Long D, Shi S (2007) Reconstructing the pattern and depth of flow onshore in a palaeotsunami from associated deposits. Sediment Geol 200(3–4):362–371

    Article  Google Scholar 

  • Soulsby RL, Smith DE, Ruffman A (2007) Reconstructing tsunami run-up from sedimentary characteristics—a simple mathematical model. Coast Sediments 7:1075–1088

  • Spiske M, Weiss R, Bahlburg H, Roskosch J, Amijaya H (2010) The TsuSedMod inversion model applied to the deposits of the 2004 Sumatra and 2006 Java tsunami and implications for estimating flow parameters of palaeo-tsunami. Sediment Geol 224(1–4):29–37

    Article  Google Scholar 

  • Srisutam C, Wagner JF (2010) Tsunami sediment characteristics at the Thai Andaman Coast. Pure Appl Geol 167(3):215–232

    Article  Google Scholar 

  • Tanioka Y, Yudhicara, Kususose T, Kathiroli S, Nishimura Y, Iwasaki SI, Satake K (2006) Rupture process of the 2004 great Sumatra–Andaman earthquake estimated from tsunami waveforms. Earth Planets Space 58(2):203–209

  • Tobita M, Suito H, Imakiire T, Kato M, Fujiwara S, Murakami M (2006) Outline of vertical displacement of the 2004 and 2005 Sumatra earthquakes revealed by satellite radar imagery. Earth Planets Space 58(12):e1–e4

    Article  Google Scholar 

  • User manual for COrnell Multi-grid COupled Tsunami model-COMCOT V1.7 (2009) http://ceeserver.cee.cornell.edu/pll-group/doc/COMCOT_User_Manual_v1_7.pdf. Accessed 11 Oct 2011

  • Van Rijn LC (1993) Principles of sediment transport in rivers, estuaries and coastal seas. Aqua Publications, The Netherlands

    Google Scholar 

  • Wang X (2009) User manual for Cornell multi-grid coupled tsunami model-COMCOT V1.7. COMCOT website hosted by Cornell University. http://ceeserver.cee.cornell.edu/pll-group/doc/COMCOT_User_Manual_v1_7.pdf.  Accessed 18 Jan 2013

  • Wu TR, Ho TC (2011) High resolution tsunami inversion for 2010 Chile earthquake. Nat Hazards Earth Syst Sci 11(12):3251–3261

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Shigehiro Fujino for generously sharing with us the detailed tsunami-deposit data using in this study. This work was supported by the Earth Observatory of Singapore, Nanyang Technological University, Singapore, through the project “Understanding Tsunami Sources from Surveyed Tsunami Heights and Sediment Deposits”. This is EOS Contribution No. 63.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenhua Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Huang, Z. & Qiu, Q. Numerical simulation of erosion and deposition at the Thailand Khao Lak coast during the 2004 Indian Ocean tsunami. Nat Hazards 74, 2251–2277 (2014). https://doi.org/10.1007/s11069-014-1301-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-014-1301-6

Keywords

Navigation