Skip to main content

Advertisement

Log in

Emergency responses to natural disasters using Formosat-2 high-spatiotemporal-resolution imagery: forest fires

  • Original Paper
  • Published:
Natural Hazards Aims and scope Submit manuscript

Abstract

This study aims to interpret and analyze images of forest fires and to establish a standard procedure for image processing and interpretation. A forest fire in Victoria, Australia, that occurred in 2009 is used as an example. The extent of the disaster can be analyzed from Formosat-2 images and ALI data. The results show that fire distribution information can be quickly retrieved through scatter plots created by ALI’s red and short-wave infrared channels. The burn zones can be rapidly identified from a combination of these wave bands. Moreover, the process of the life of the fire can be deduced through smoke information and changes in the burn zones observed from the images. The maximum likelihood method and K-means method are adopted to rapidly determine the sizes and ranges of the burn zones. The precision obtained by applying this method to images influenced by smoke is 75.74 %, while that without the influence of smoke is 81.92 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Atkinson D, Chladil M, Janssen V et al (2010) Implementation of quantitative bushfire risk analysis in a GIS environment. Int J Wildland Fire 19:649–658

    Article  Google Scholar 

  • Australian Government Bureau of Meteorology (2003) Bushfire weather

  • Cao X, Chen J, Matsushita B, Imura H, Wang L (2009) An automatic method for burn scar mapping using support vector machines. Int J Remote Sens 30:577–594

    Google Scholar 

  • Dennison PE, Roberts DA (2009) Daytime fire detection using airborne hyperspectral data. Remote Sens Environ 113:1646–1657

    Article  Google Scholar 

  • Dennison P, Charoensiri K, Roberts D, Peterson S, Green R (2006) Wildfire temperature and land cover modeling using hyperspectral data. Remote Sens Environ 100:212–222

    Article  Google Scholar 

  • Fraser RH, Li Z, Cihlar J (2000) Hotspot and NDVI differencing synergy (HANDS): a new technique for burned area mapping over boreal forest. Remote Sens Environ 74:362–376

    Article  Google Scholar 

  • Giglio L, Kendall JD (2001) Application of the Dozier retrieval to wildfire characterization—a sensitivity analysis. Remote Sens Environ 77:34–49

    Article  Google Scholar 

  • Joyce KE, Belliss SE, Samsonov SV, McNeill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for mapping natural hazards and disasters. Prog Phys Geogr 33:183–207

    Article  Google Scholar 

  • Justice CO, Korontzi S (2001) A review of the status of satellite fire monitoring and the requirements for global environmental change research, SPB Academic Publishing bv {a}

  • Justice CO, Giglio L, Korontzi S, Owens J, Morisette JT, Roy D, Descloitres J, Alleaume S, Petitcolin F, Kaufman Y (2002) The MODIS fire products. Remote Sens Environ 83:244–262

    Article  Google Scholar 

  • Kaufman YJ, Justice CO, Flynn LP, Kendall JD, Prins EM, Giglio L, Ward DE, Menzel WP, Setzer AW (1998) Potential global fire monitoring from EOS-MODIS. J Geophys Res Atmos 103:32215–32238

    Article  Google Scholar 

  • Koutsias N, Karteris M (1998) Logistic regression modelling of multitemporal Thematic Mapper data for burned area mapping. Int J Remote Sens 19:3499–3514

    Article  Google Scholar 

  • Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE, Benson NC (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildland Fire 15:319–345

    Article  Google Scholar 

  • Leonard JE, McArthur NA (1999) A history of research into building performance in Australian bushfires. Paper presented

  • Lillesand TM, Kiefer RW (1994) Remote sensing and image interpretation, 3rd edn. Wiley, New York

  • Lin ML (2011) Using GIS-based spatial geocomputation from remotely sensed data for drought risk-sensitive assessment. Int J Innov Comput Inform Control 7(2):657–668

    Google Scholar 

  • Lin CW (2012) The construction of a high-resolution visual monitoring for hazard analysis. Nat Hazards. doi:10.1007/s11069-012-0409-9

    Google Scholar 

  • Liu CC, Liu JG, Lin CW, Wu AM, Liu SH, Shieh CL (2007) Image processing of FORMOSAT-2 data for monitoring the South Asia tsunami. Int J Remote Sens 28:3093–3111

    Article  Google Scholar 

  • Liu CC, Wu AM, Yen SY, Huang CH (2009) Rapid locating of fire points from Formosat-2 high spatial resolution imagery: example of the 2007 California wildfire. Int J Wildland Fire 18:415–422

    Article  Google Scholar 

  • Long M (2006) A climatology of extreme fire weather days in Victoria. Aust Meteorol Mag 55:3–18

    Google Scholar 

  • Lowell K, Shamir R, Siqueira A et al (2009) Assessing the capabilities of geospatial data to map built structures and evaluate their bushfire threat. Int J Wildland Fire 18:1010–1020

    Article  Google Scholar 

  • Lucas C (2007) Bushfire weather in Southeast Australia: recent trends and projected climate change impacts. CRC, Bushfire

    Google Scholar 

  • McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869

    Article  Google Scholar 

  • Metternicht G (2003) Vegetation indices derived from high-resolution airborne videography for precision crop management. Int J Remote Sens 24(14):2855–2877

    Article  Google Scholar 

  • Morisette J, Giglio L, Csiszar I, Justice C (2005) Validation of the MODIS active fire product over Southern Africa with ASTER data. Int J Remote Sens 26:4239–4264

    Article  Google Scholar 

  • Pan KL (2006) Remote sensing outline: remote sensing concept, principles and interpretations of imaging techniques. Scientific & Technical Publishing Co., Ltd

  • Pyne S, Andrews P, Laven R (1996) Introduction to wildland fire. Wiley, New York

    Google Scholar 

  • Salvador R, Valeriano J, Pons X, Diaz-Delgado R (2000) A semi-automatic methodology to detect fire scars in shrubs and evergreen forests with Landsat MSS time series. Int J Remote Sens 21:655–671

    Article  Google Scholar 

  • Sharples JJ (2009) An overview of mountain meteorological effects relevant to fire behaviour and bushfire risk. Int J Wildland Fire 18:737–754

    Article  Google Scholar 

  • Sim M (2002) Bushfires: are we doing enough to reduce the human impact? Occup Environ Med 59:215–216

    Google Scholar 

  • Sullivan AL (2009) Wildland surface fire spread modelling, 1990–2007. 3: simulation and mathematical analogue models. Int J Wildland Fire 18:387–403

    Article  Google Scholar 

  • Thomas PJ, Nixon O (1993) Near-infrared forest fire detection concept. Appl Opt 32:5348–5355

    Article  Google Scholar 

  • Thornton PR (2011) Short communication on research response to the Black Saturday (7th February 2009) Victorian Bushfires. Aust Fire Technol 47:295–301

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. the National Science Council of the Republic of China, Taiwan, for their financial support of this research under Contract Nos. NSC 101-2627-B-006-013, NSC 101-2611-M-006-002, and 100-2628-E-022-002-MY2. We would like to thank Daniel Irwin and Stuart Frye for providing ALI data and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C.-W. Chen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, C.C., Kuo, Y.C. & Chen, CW. Emergency responses to natural disasters using Formosat-2 high-spatiotemporal-resolution imagery: forest fires. Nat Hazards 66, 1037–1057 (2013). https://doi.org/10.1007/s11069-012-0535-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11069-012-0535-4

Keywords

Navigation