Skip to main content
Log in

Angiotensin II Triggers Apoptosis Via Enhancement of NADPH Oxidase-Dependent Oxidative Stress in a Dopaminergic Neuronal Cell Line

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Numerous studies reveal that Angiotensin II (Ang II), the main effector of renin-angiotensin system, contributes to the pathogenesis of Parkinson’s disease (PD) via triggering dopaminergic cell loss. However, the underlying mechanisms remain largely unclear. In the current study, by using CATH.a cell, a dopaminergic neuronal cell line stably expressing Angiotensin II type 1 receptor (AT1R) and Angiotensin II type 2 receptor (AT2R), we showed that Ang II treatment triggered cell apoptosis in a dose-dependent manner, providing the first evidence that apoptotic cell death contributed to the dopaminergic cell loss induced by Ang II. Ang II treatment also led to a significant increment in intracellular reactive oxygen species generation, which could be fully abolished by nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors apocynin or diphenylene iodonium, indicating that Ang II enhanced oxidative stress via a NADPH oxidase-dependent manner. More importantly, inhibition of oxidative stress by NADPH oxidase inhibitors partially attenuated cell apoptosis caused by Ang II, implying that the enhancement of NADPH oxidase-dependent oxidative stress contributed to the cell apoptosis triggered by Ang II. Furthermore, the Ang II-induced oxidative stress and subsequent apoptosis could be completely abolished by AT1R blocker losartan rather than AT2R blocker PD1223319, suggesting that the aforementioned detrimental effects of Ang II are mediated by AT1R. In summary, these findings have deepened our understanding on the role of Ang II in PD pathogenesis, and support the use of AT1R blockers in the treatment of this devastating disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jiang T, Yu JT, Tian Y, Tan L (2013) Epidemiology and etiology of Alzheimer’s disease: from genetic to non- genetic factors. Curr Alzheimer Res 10(8):852–867

    Article  CAS  PubMed  Google Scholar 

  2. Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J (2011) Epidemiology and etiology of Parkinson’s disease: a review of the evidence. Eur J Epidemiol 26(Suppl 1):S1–S58. doi:10.1007/s10654-011-9581-6

    Article  PubMed  Google Scholar 

  3. Schapira AH (2009) Neurobiology and treatment of Parkinson’s disease. Trends Pharmacol Sci 30(1):41–47. doi:10.1016/j.tips.2008.10.005

    Article  CAS  PubMed  Google Scholar 

  4. Schapira AH, Jenner P (2011) Etiology and pathogenesis of Parkinson’s disease. Mov Disord Off J Mov Disord Soc 26(6):1049–1055. doi:10.1002/mds.23732

    Article  Google Scholar 

  5. Nguyen Dinh Cat A, Touyz RM (2011) A new look at the renin-angiotensin system–focusing on the vascular system. Peptides 32(10):2141–2150. doi:10.1016/j.peptides.2011.09.010

    Article  CAS  PubMed  Google Scholar 

  6. Herr D, Bekes I, Wulff C (2013) Local renin-angiotensin system in the reproductive system. Front Endocrinol 4:150. doi:10.3389/fendo.2013.00150

    Article  Google Scholar 

  7. Marquez E, Riera M, Pascual J, Soler MJ (2014) Renin angiotensin system within the diabetic podocyte. Am J Physiol Ren Physiol Ajprenal 00531:02013. doi:10.1152/ajprenal.00531.2013

    Google Scholar 

  8. Giese MJ, Speth RC (2014) The ocular renin-angiotensin system: a therapeutic target for the treatment of ocular disease. Pharmacol Ther 142(1):11–32. doi:10.1016/j.pharmthera.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  9. Wright JW, Harding JW (2011) Brain renin-angiotensin–a new look at an old system. Prog Neurobiol 95(1):49–67. doi:10.1016/j.pneurobio.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  10. Jiang T, Gao L, Lu J, Zhang YD (2013) ACE2-Ang-(1-7)-Mas axis in brain: a potential target for prevention and treatment of ischemic stroke. Curr Neuropharmacol 11(2):209–217. doi:10.2174/1570159X11311020007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Labandeira-Garcia JL, Garrido-Gil P, Rodriguez-Pallares J, Valenzuela R, Borrajo A, Rodriguez-Perez AI (2014) Brain renin-angiotensin system and dopaminergic cell vulnerability. Front neuroanat 8:67. doi:10.3389/fnana.2014.00067

    PubMed Central  PubMed  Google Scholar 

  12. Rodriguez-Pallares J, Rey P, Parga JA, Munoz A, Guerra MJ, Labandeira-Garcia JL (2008) Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 31(1):58–73. doi:10.1016/j.nbd.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  13. Valenzuela R, Barroso-Chinea P, Villar-Cheda B, Joglar B, Munoz A, Lanciego JL, Labandeira-Garcia JL (2010) Location of prorenin receptors in primate substantia nigra: effects on dopaminergic cell death. J Neuropathol Exp Neurol 69(11):1130–1142. doi:10.1097/NEN.0b013e3181fa0308

    Article  CAS  PubMed  Google Scholar 

  14. Wu L, Tian YY, Shi JP, Xie W, Shi JQ, Lu J, Zhang YD (2013) Inhibition of endoplasmic reticulum stress is involved in the neuroprotective effects of candesartan cilexitil in the rotenone rat model of Parkinson’s disease. Neurosci Lett 548:50–55. doi:10.1016/j.neulet.2013.06.008

    Article  CAS  PubMed  Google Scholar 

  15. Sonsalla PK, Coleman C, Wong LY, Harris SL, Richardson JR, Gadad BS, Li W, German DC (2013) The angiotensin converting enzyme inhibitor captopril protects nigrostriatal dopamine neurons in animal models of parkinsonism. Exp Neurol 250:376–383. doi:10.1016/j.expneurol.2013.10.014

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Asanuma M, Miyazaki I, Kikkawa Y, Kimoto N, Takeshima M, Murakami S, Miyoshi K (2012) Cyclooxygenase-independent neuroprotective effects of aspirin against dopamine quinone-induced neurotoxicity. Neurochem Res 37(9):1944–1951. doi:10.1007/s11064-012-0813-2

    Article  CAS  PubMed  Google Scholar 

  17. Lu J, Wu L, Jiang T, Wang Y, Zhao H, Gao Q, Pan Y, Tian Y, Zhang Y (2014) Angiotensin AT receptor stimulation inhibits activation of NADPH oxidase and ameliorates oxidative stress in rotenone model of Parkinson’s disease in CATH.a cells. Neurotoxicol Teratol 47C:16–24. doi:10.1016/j.ntt.2014.11.004

    Google Scholar 

  18. Chen SS, Jiang T, Wang Y, Gu LZ, Wu HW, Tan L, Guo J (2014) Activation of double-stranded RNA-dependent protein kinase inhibits proliferation of pancreatic beta-cells. Biochem Biophys Res Commun 443(3):814–820. doi:10.1016/j.bbrc.2013.12.051

    Article  CAS  PubMed  Google Scholar 

  19. Wu L, Luo N, Zhao HR, Gao Q, Lu J, Pan Y, Shi JP, Tian YY, Zhang YD (2014) Salubrinal protects against rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway. Brain Res 1549:52–62. doi:10.1016/j.brainres.2014.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Jiang T, Yu JT, Zhu XC, Tan MS, Wang HF, Cao L, Zhang QQ, Shi JQ, Gao L, Qin H, Zhang YD, Tan L (2014) Temsirolimus promotes autophagic clearance of amyloid-beta and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res Off J Ital Pharmacol Soc 81:54–63. doi:10.1016/j.phrs.2014.02.008

    CAS  Google Scholar 

  21. Jiang T, Yu JT, Zhu XC, Wang HF, Tan MS, Cao L, Zhang QQ, Gao L, Shi JQ, Zhang YD, Tan L (2014) Acute metformin preconditioning confers neuroprotection against focal cerebral ischemia by pre-activation of AMPK-dependent autophagy. Br J Pharmacol. doi:10.1111/bph.12655

    Google Scholar 

  22. Jiang T, Tan L, Zhu XC, Zhang QQ, Cao L, Tan MS, Gu LZ, Wang HF, Ding ZZ, Zhang YD, Yu JT (2014) Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol 39(13):2949–2962. doi:10.1038/npp.2014.164

    Article  CAS  Google Scholar 

  23. Jiang T, Yu JT, Zhu XC, Tan MS, Gu LZ, Zhang YD, Tan L (2014) Triggering receptor expressed on myeloid cells 2 knockdown exacerbates aging-related neuroinflammation and cognitive deficiency in senescence-accelerated mouse prone 8 mice. Neurobiol Aging 35(6):1243–1251. doi:10.1016/j.neurobiolaging.2013.11.026

    Article  CAS  PubMed  Google Scholar 

  24. Creagh EM (2014) Caspase crosstalk: integration of apoptotic and innate immune signalling pathways. Trends Immunol 35(12):631–640. doi:10.1016/j.it.2014.10.004

    Article  CAS  PubMed  Google Scholar 

  25. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, Harrison DG, Dikalova AE (2014) Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal 20(2):281–294. doi:10.1089/ars.2012.4918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Wang HX, Yang H, Han QY, Li N, Jiang X, Tian C, Du J, Li HH (2013) NADPH oxidases mediate a cellular “memory” of angiotensin II stress in hypertensive cardiac hypertrophy. Free Radic Biol Med 65:897–907. doi:10.1016/j.freeradbiomed.2013.08.179

    Article  CAS  PubMed  Google Scholar 

  27. Kleikers PW, Wingler K, Hermans JJ, Diebold I, Altenhofer S, Radermacher KA, Janssen B, Gorlach A, Schmidt HH (2012) NADPH oxidases as a source of oxidative stress and molecular target in ischemia/reperfusion injury. J Mol Med 90(12):1391–1406. doi:10.1007/s00109-012-0963-3 (Berl)

    Article  CAS  PubMed  Google Scholar 

  28. Vignais PV (2002) The superoxide-generating NADPH oxidase: structural aspects and activation mechanism. Cell Mol Life Sci CMLS 59(9):1428–1459

    Article  CAS  Google Scholar 

  29. Baillet A, Chanteperdrix V, Trocme C, Casez P, Garrel C, Besson G (2010) The role of oxidative stress in amyotrophic lateral sclerosis and Parkinson’s disease. Neurochem Res 35(10):1530–1537. doi:10.1007/s11064-010-0212-5

    Article  CAS  PubMed  Google Scholar 

  30. Dasuri K, Zhang L, Keller JN (2013) Oxidative stress, neurodegeneration, and the balance of protein degradation and protein synthesis. Free Radic Biol Med 62:170–185. doi:10.1016/j.freeradbiomed.2012.09.016

    Article  CAS  PubMed  Google Scholar 

  31. Onyango IG (2008) Mitochondrial dysfunction and oxidative stress in Parkinson’s disease. Neurochem Res 33(3):589–597. doi:10.1007/s11064-007-9482-y

    Article  CAS  PubMed  Google Scholar 

  32. Miller RL, James-Kracke M, Sun GY, Sun AY (2009) Oxidative and inflammatory pathways in Parkinson’s disease. Neurochem Res 34(1):55–65. doi:10.1007/s11064-008-9656-2

    Article  CAS  PubMed  Google Scholar 

  33. Liu J, Zhang FF, Li L, Yang J, Guan YY, Du YH (2013) ClC-3 deficiency prevents apoptosis induced by angiotensin II in endothelial progenitor cells via inhibition of NADPH oxidase. Apoptosis Int J Program Cell Death 18(10):1262–1273. doi:10.1007/s10495-013-0881-z

    Article  CAS  Google Scholar 

  34. Wu B, Lin R, Dai R, Chen C, Wu H, Hong M (2013) Valsartan attenuates oxidative stress and NF-kappaB activation and reduces myocardial apoptosis after ischemia and reperfusion. Eur J Pharmacol 705(1–3):140–147. doi:10.1016/j.ejphar.2013.02.036

    Article  CAS  PubMed  Google Scholar 

  35. Yamamoto E, Tamamaki N, Nakamura T, Kataoka K, Tokutomi Y, Dong YF, Fukuda M, Matsuba S, Ogawa H, Kim-Mitsuyama S (2008) Excess salt causes cerebral neuronal apoptosis and inflammation in stroke-prone hypertensive rats through angiotensin II-induced NADPH oxidase activation. Stroke J Cereb Circ 39(11):3049–3056. doi:10.1161/STROKEAHA.108.517284

    Article  CAS  Google Scholar 

  36. Akishita M, Nagai K, Xi H, Yu W, Sudoh N, Watanabe T, Ohara-Imaizumi M, Nagamatsu S, Kozaki K, Horiuchi M, Toba K (2005) Renin-angiotensin system modulates oxidative stress-induced endothelial cell apoptosis in rats. Hypertension 45(6):1188–1193. doi:10.1161/01.HYP.0000165308.04703.f2

    Article  CAS  PubMed  Google Scholar 

  37. Tan Y, Li X, Prabhu SD, Brittian KR, Chen Q, Yin X, McClain CJ, Zhou Z, Cai L (2012) Angiotensin II plays a critical role in alcohol-induced cardiac nitrative damage, cell death, remodeling, and cardiomyopathy in a protein kinase C/nicotinamide adenine dinucleotide phosphate oxidase-dependent manner. J Am Coll Cardiol 59(16):1477–1486. doi:10.1016/j.jacc.2011.12.034

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from the Innovation Project for Postgraduates of Jiangsu Province to T.J. (CXLX13_561), the National Natural Science Foundation of China (81271418) and the Six Talent Summit of Jiangsu Province to Y.D.Z. (N02012-WS-086), and the Natural Science Foundation of Jiangsu Province to Y.Y.T. (BK2012524).

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to You-Yong Tian or Ying-Dong Zhang.

Additional information

Hong-Rui Zhao and Teng Jiang should be regarded as co-first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, HR., Jiang, T., Tian, YY. et al. Angiotensin II Triggers Apoptosis Via Enhancement of NADPH Oxidase-Dependent Oxidative Stress in a Dopaminergic Neuronal Cell Line. Neurochem Res 40, 854–863 (2015). https://doi.org/10.1007/s11064-015-1536-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-015-1536-y

Keywords

Navigation