Skip to main content

Advertisement

Log in

Pharmacological Identification of a Guanidine-Containing β-Alanine Analogue with Low Micromolar Potency and Selectivity for the Betaine/GABA Transporter 1 (BGT1)

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The γ-aminobutyric acid (GABA) transporters (GATs) are key membrane transporter proteins involved in the termination of GABAergic signaling at synapses in the mammalian brain and proposed drug targets in neurological disorders such as epilepsy. To date, four different GAT subtypes have been identified: GAT1, GAT2, GAT3 and the betaine/GABA transporter 1 (BGT1). Owing to the lack of potent and subtype selective inhibitors of the non-GAT1 GABA transporters, the physiological role and therapeutic potential of these transporters remain to be fully understood. Based on bioisosteric replacement of the amino group in β-alanine or GABA, a series of compounds was generated, and their pharmacological activity assessed at human GAT subtypes. Using a cell-based [3H]GABA uptake assay, several selective inhibitors at human BGT1 were identified. The guanidine-containing compound 9 (2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid hydrochloride) displayed more than 250 times greater potency than the parent compound β-alanine at BGT1 and is thus the most potent inhibitor reported to date for this subtype (IC50 value of 2.5 µM). In addition, compound 9 displayed about 400, 16 and 40 times lower inhibitory potency at GAT1, GAT2 and GAT3, respectively. Compound 9 was shown to be a substrate for BGT1 and to have an overall similar pharmacological profile at the mouse orthologue. Compound 9 constitutes an interesting pharmacological tool for specifically investigating the cellular pharmacology of BGT1 and is the first small-molecule substrate identified with such a high selectivity for BGT1 over the three other GAT subtypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Obata K (2013) Synaptic inhibition and γ-aminobutyric acid in the mammalian central nervous system. Proc Jpn Acad Ser B Phys Biol Sci 89(4):139–156

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Möhler H (2012) The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 62(1):42–53. doi:10.1016/j.neuropharm.2011.08.040

    Article  PubMed  Google Scholar 

  3. Gottesmann C (2002) GABA mechanisms and sleep. Neuroscience 111(2):231–239

    Article  PubMed  CAS  Google Scholar 

  4. Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ (2012) GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 36(9):2044–2055. doi:10.1016/j.neubiorev.2012.07.005

    Article  PubMed  CAS  Google Scholar 

  5. Macdonald RL, Kang JQ, Gallagher MJ (2010) Mutations in GABAA receptor subunits associated with genetic epilepsies. J Physiol 588(Pt 11):1861–1869. doi:10.1113/jphysiol.2010.186999

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Mula M (2011) GABAergic drugs in the treatment of epilepsy: modern or outmoded? Future Med Chem 3(2):177–182. doi:10.4155/fmc.10.296

    Article  PubMed  CAS  Google Scholar 

  7. Madsen KK, White HS, Schousboe A (2010) Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs. Pharmacol Ther 125(3):394–401. doi:10.1016/j.pharmthera.2009.11.007

    Article  PubMed  CAS  Google Scholar 

  8. Schousboe A, Waagepetersen HS (2008) GABA neurotransmission: an overview. In: Lajtha A, Vizi ES (eds) Handbook of neurochemistry and molecular neurobiology. Springer, Berlin, pp 213–226. doi:10.1007/978-0-387-30382-6_9

    Chapter  Google Scholar 

  9. Dalby NO (2000) GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors. Neuropharmacology 39(12):2399–2407

    Article  PubMed  CAS  Google Scholar 

  10. Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63(3):585–640. doi:10.1124/pr.108.000869

    Article  PubMed  CAS  Google Scholar 

  11. Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ, Collaborators C (2013) The Concise Guide to PHARMACOLOGY 2013/14: transporters. Br J Pharmacol 170(8):1706–1796. doi:10.1111/bph.12450

    Article  PubMed  CAS  Google Scholar 

  12. Liu QR, Lopez-Corcuera B, Mandiyan S, Nelson H, Nelson N (1993) Molecular characterization of four pharmacologically distinct γ-aminobutyric acid transporters in mouse brain. J Biol Chem 268(3):2106–2112

    PubMed  CAS  Google Scholar 

  13. Conti F, Minelli A, Melone M (2004) GABA transporters in the mammalian cerebral cortex: localization, development and pathological implications. Brain Res Brain Res Rev 45(3):196–212. doi:10.1016/j.brainresrev.2004.03.003

    Article  PubMed  CAS  Google Scholar 

  14. Jensen K, Chiu CS, Sokolova I, Lester HA, Mody I (2003) GABA transporter-1 (GAT1)-deficient mice: differential tonic activation of GABAA versus GABAB receptors in the hippocampus. J Neurophysiol 90(4):2690–2701. doi:10.1152/jn.00240.2003

    Article  PubMed  CAS  Google Scholar 

  15. Nielsen EB, Suzdak PD, Andersen KE, Knutsen LJ, Sonnewald U, Braestrup C (1991) Characterization of tiagabine (NO-328), a new potent and selective GABA uptake inhibitor. Eur J Pharmacol 196(3):257–266

    Article  PubMed  CAS  Google Scholar 

  16. Schousboe A, Madsen KK, White HS (2011) GABA transport inhibitors and seizure protection: the past and future. Future Med Chem 3(2):183–187. doi:10.4155/fmc.10.288

    Article  PubMed  CAS  Google Scholar 

  17. Chiu CS, Brickley S, Jensen K, Southwell A, McKinney S, Cull-Candy S, Mody I, Lester HA (2005) GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J Neurosci 25(12):3234–3245. doi:10.1523/jneurosci.3364-04.2005

    Article  PubMed  CAS  Google Scholar 

  18. Salat K, Więckowska A, Więckowski K, Höfner GC, Kamiński J, Wanner KT, Malawska B, Filipek B, Kulig K (2012) Synthesis and pharmacological properties of new GABA uptake inhibitors. Pharmacol Rep 64(4):817–833

    Article  PubMed  CAS  Google Scholar 

  19. Clausen RP, Moltzen EK, Perregaard J, Lenz SM, Sanchez C, Falch E, Frølund B, Bolvig T, Sarup A, Larsson OM, Schousboe A, Krogsgaard-Larsen P (2005) Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg Med Chem 13(3):895–908. doi:10.1016/j.bmc.2004.10.029

    Article  PubMed  CAS  Google Scholar 

  20. White HS, Watson WP, Hansen SL, Slough S, Perregaard J, Sarup A, Bolvig T, Petersen G, Larsson OM, Clausen RP, Frølund B, Falch E, Krogsgaard-Larsen P, Schousboe A (2005) First demonstration of a functional role for central nervous system betaine/γ-aminobutyric acid transporter (mGAT2) based on synergistic anticonvulsant action among inhibitors of mGAT1 and mGAT2. J Pharmacol Exp Ther 312(2):866–874. doi:10.1124/jpet.104.068825

    Article  PubMed  CAS  Google Scholar 

  21. Madsen KK, Ebert B, Clausen RP, Krogsgaard-Larsen P, Schousboe A, White HS (2011) Selective GABA transporter inhibitors tiagabine and EF1502 exhibit mechanistic differences in their ability to modulate the ataxia and anticonvulsant action of the extrasynaptic GABAA receptor agonist gaboxadol. J Pharmacol Exp Ther 338(1):214–219. doi:10.1124/jpet.111.179671

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Smith MD, Saunders GW, Clausen RP, Frølund B, Krogsgaard-Larsen P, Larsson OM, Schousboe A, Wilcox KS, White HS (2008) Inhibition of the betaine-GABA transporter (mGAT2/BGT-1) modulates spontaneous electrographic bursting in the medial entorhinal cortex (mEC). Epilepsy Res 79(1):6–13. doi:10.1016/j.eplepsyres.2007.12.009

    Article  PubMed  CAS  Google Scholar 

  23. Vogensen SB, Jørgensen L, Madsen KK, Borkar N, Wellendorph P, Skovgaard-Petersen J, Schousboe A, White HS, Krogsgaard-Larsen P, Clausen RP (2013) Selective mGAT2 (BGT-1) GABA uptake inhibitors: design, synthesis, and pharmacological characterization. J Med Chem 56(5):2160–2164. doi:10.1021/jm301872x

    Article  PubMed  CAS  Google Scholar 

  24. Lehre AC, Rowley NM, Zhou Y, Holmseth S, Guo C, Holen T, Hua R, Laake P, Olofsson AM, Poblete-Naredo I, Rusakov DA, Madsen KK, Clausen RP, Schousboe A, White HS, Danbolt NC (2011) Deletion of the betaine-GABA transporter (BGT1; slc6a12) gene does not affect seizure thresholds of adult mice. Epilepsy Res 95(1–2):70–81. doi:10.1016/j.eplepsyres.2011.02.014

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Zhou Y, Holmseth S, Hua R, Lehre AC, Olofsson AM, Poblete-Naredo I, Kempson SA, Danbolt NC (2012) The betaine-GABA transporter (BGT1, slc6a12) is predominantly expressed in the liver and at lower levels in the kidneys and at the brain surface. Am J Physiol Ren Physiol 302(3):F316–F328. doi:10.1152/ajprenal.00464.2011

    Article  CAS  Google Scholar 

  26. Høg S, Greenwood JR, Madsen KB, Larsson OM, Frølund B, Schousboe A, Krogsgaard-Larsen P, Clausen RP (2006) Structure-activity relationships of selective GABA uptake inhibitors. Curr Top Med Chem 6(17):1861–1882

    Article  PubMed  Google Scholar 

  27. Kragholm B, Kvist T, Madsen KK, Jørgensen L, Vogensen SB, Schousboe A, Clausen RP, Jensen AA, Bräuner-Osborne H (2013) Discovery of a subtype selective inhibitor of the human betaine/GABA transporter 1 (BGT-1) with a non-competitive pharmacological profile. Biochem Pharmacol 86(4):521–528. doi:10.1016/j.bcp.2013.06.007

    Article  PubMed  CAS  Google Scholar 

  28. Borden LA, Dhar TG, Smith KE, Branchek TA, Gluchowski C, Weinshank RL (1994) Cloning of the human homologue of the GABA transporter GAT-3 and identification of a novel inhibitor with selectivity for this site. Recept Channels 2(3):207–213

    PubMed  CAS  Google Scholar 

  29. Pabel J, Faust M, Prehn C, Worlein B, Allmendinger L, Hofner G, Wanner KT (2012) Development of an (S)-1-{2-[tris(4-methoxyphenyl)methoxy]ethyl}piperidine-3-carboxylic acid [(S)-SNAP-5114] carba analogue inhibitor for murine γ-aminobutyric acid transporter type 4. Chem Med Chem 7(7):1245–1255. doi:10.1002/cmdc.201200126

    Article  PubMed  CAS  Google Scholar 

  30. Kvist T, Christiansen B, Jensen AA, Bräuner-Osborne H (2009) The four human γ-aminobutyric acid (GABA) transporters: pharmacological characterization and validation of a highly efficient screening assay. Comb Chem High Throughput Screen 12(3):241–249

    Article  PubMed  CAS  Google Scholar 

  31. Krogsgaard-Larsen P, Frølund B, Frydenvang K (2000) GABA uptake inhibitors. Design, molecular pharmacology and therapeutic aspects. Curr Pharm Des 6(12):1193–1209

    Article  PubMed  CAS  Google Scholar 

  32. Petersen JG, Sørensen T, Damgaard M, Nielsen B, Jensen AA, Balle T, Bergmann R, Frølund B (2014) Synthesis and pharmacological evaluation of 6-aminonicotinic acid analogues as novel γ-aminobutyric acidA receptor agonists. Submitted

  33. White HS, Sarup A, Bolvig T, Kristensen AS, Petersen G, Nelson N, Pickering DS, Larsson OM, Frølund B, Krogsgaard-Larsen P, Schousboe A (2002) Correlation between anticonvulsant activity and inhibitory action on glial γ-aminobutyric acid uptake of the highly selective mouse γ-aminobutyric acid transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J Pharmacol Exp Ther 302(2):636–644. doi:10.1124/jpet.102.034819

    Article  PubMed  CAS  Google Scholar 

  34. DuBridge RB, Tang P, Hsia HC, Leong PM, Miller JH, Calos MP (1987) Analysis of mutation in human cells by using an Epstein–Barr virus shuttle system. Mol Cell Biol 7(1):379–387

    PubMed  CAS  PubMed Central  Google Scholar 

  35. Christiansen B, Meinild AK, Jensen AA, Bräuner-Osborne H (2007) Cloning and characterization of a functional human γ-aminobutyric acid (GABA) transporter, human GAT-2. J Biol Chem 282(27):19331–19341. doi:10.1074/jbc.M702111200

    Article  PubMed  CAS  Google Scholar 

  36. Jensen AA, Bräuner-Osborne H (2004) Pharmacological characterization of human excitatory amino acid transporters EAAT1, EAAT2 and EAAT3 in a fluorescence-based membrane potential assay. Biochem Pharmacol 67(11):2115–2127. doi:10.1016/j.bcp.2004.02.013

    Article  PubMed  CAS  Google Scholar 

  37. Kragler A, Höfner G, Wanner KT (2005) Novel parent structures for inhibitors of the murine GABA transporters mGAT3 and mGAT4. Eur J Pharmacol 519(1–2):43–47. doi:10.1016/j.ejphar.2005.06.053

    Article  PubMed  CAS  Google Scholar 

  38. Skovstrup S, David L, Taboureau O, Jørgensen FS (2012) A steered molecular dynamics study of binding and translocation processes in the GABA transporter. PLoS One 7(6):e39360. doi:10.1371/journal.pone.0039360

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Sieghart W, Fuchs K, Tretter V, Ebert V, Jechlinger M, Höger H, Adamiker D (1999) Structure and subunit composition of GABAA receptors. Neurochem Int 34(5):379–385

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the A.P. Møller Foundation for the Advancement of Medical Sciences, the Lundbeck Foundation, the Novo Nordisk Foundation, the Carlsberg Foundation and the Drug Research Academy. The authors wish to thank Professor Arne Schousboe for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bente Frølund or Petrine Wellendorph.

Additional information

Special Issue: In honor of Krogsgaard-Larsen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2509 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Khawaja, A., Petersen, J.G., Damgaard, M. et al. Pharmacological Identification of a Guanidine-Containing β-Alanine Analogue with Low Micromolar Potency and Selectivity for the Betaine/GABA Transporter 1 (BGT1). Neurochem Res 39, 1988–1996 (2014). https://doi.org/10.1007/s11064-014-1336-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-014-1336-9

Keywords

Navigation