Skip to main content
Log in

Overexpression of miR-7-1 Increases Efficacy of Green Tea Polyphenols for Induction of Apoptosis in Human Malignant Neuroblastoma SH-SY5Y and SK-N-DZ Cells

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neuroblastoma is an extracranial solid tumor that usually occurs in infants and children. Malignant neuroblastomas remain mostly refractory to currently available chemotherapeutic agents. So, new therapeutic agents and their molecular mechanisms for induction of cell death must be explored for successful treatment of human malignant neuroblastomas. Two polyphenolic compounds, which are abundant in green tea, are (−)-epigallocatechin (EGC) and (−)-epigallocatechin-3-gallate (EGCG) that possess impressive anti-cancer properties. It is not known yet whether EGC and EGCG can modulate the levels of expression of specific microRNAs (miRs) for induction of apoptosis in human malignant neuroblastomas. In this investigation, we revealed that treatment with EGC or EGCG caused induction of apoptosis with significant changes in expression of specific oncogenic miRs (OGmiRs) and tumor suppressor miRs (TSmiRs) in human malignant neuroblastoma SH-SY5Y and SK-N-DZ cell lines. Treatment of both cell lines with either 50 μM EGC or 50 μM EGCG decreased expression of the OGmiRs (miR-92, miR-93, and miR-106b) and increased expression of the TSmiRs (miR-7-1, miR-34a, and miR-99a) leading to induction of extrinsic and intrinsic pathways of apoptosis. Our data also demonstrated that overexpression of miR-93 decreased efficacy while overexpression of miR-7-1 increased efficacy of the green tea polyphenols for induction of apoptosis in both cell lines. In conclusion, our current investigation clearly indicates that overexpression of miR-7-1 can highly potentiate efficacy of EGCG for induction of apoptosis in human malignant neuroblastoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Brodeur GM (2003) Neuroblastoma: biological insights into a clinical enigma. Nat Rev Cancer 3:203–216

    Article  PubMed  CAS  Google Scholar 

  2. Janardhanan R et al (2009) N-Myc down regulation induced differentiation, early cell cycle exit, and apoptosis in human malignant neuroblastoma cells having wild type or mutant p53. Biochem Pharmacol 78:1105–1114

    Article  PubMed  CAS  Google Scholar 

  3. Kurahashi N et al (2008) Green tea consumption and prostate cancer risk in Japanese men: a prospective study. Am J Epidemiol 167:71–77

    Article  PubMed  Google Scholar 

  4. Golden EB et al (2009) Green tea polyphenols block the anticancer effects of bortezomib and other boronic acid-based proteasome inhibitors. Blood 113:5927–5937

    Article  PubMed  CAS  Google Scholar 

  5. Slade RF et al (2003) Characterization and inhibition of fatty acid synthase in pediatric tumor cell lines. Anticancer Res 23:1235–1243

    PubMed  CAS  Google Scholar 

  6. Kuzuhara T et al (2008) Green tea catechin as a chemical chaperone in cancer prevention. Cancer Lett 261:12–20

    Article  PubMed  CAS  Google Scholar 

  7. Chen C et al (2003) Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis 24:1369–1378

    Article  PubMed  CAS  Google Scholar 

  8. Calin GA et al (2004) Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci USA 101:2999–3004

    Article  PubMed  CAS  Google Scholar 

  9. Miska EA et al (2004) Microarray analysis of microRNA expression in the developing mammalian brain. Genome Biol 5:R68

    Article  PubMed  Google Scholar 

  10. Shohet JM et al (2011) A genome-wide search for promoters that respond to increased MYCN reveals both new oncogenic and tumor suppressor microRNAs associated with aggressive neuroblastoma. Cancer Res 71:3841–3851

    Article  PubMed  CAS  Google Scholar 

  11. Volinia S et al (2006) A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 103:2257–2261

    Article  PubMed  CAS  Google Scholar 

  12. Schulte JH et al (2008) MYCN regulates oncogenic microRNAs in neuroblastoma. Int J Cancer 122:699–704

    Article  PubMed  CAS  Google Scholar 

  13. Cheng AM et al (2005) Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res 33:1290–1297

    Article  PubMed  CAS  Google Scholar 

  14. Junn E et al (2009) Repression of α-synuclein expression and toxicity by microRNA-7. Proc Natl Acad Sci USA 106:13052–13057

    Article  PubMed  CAS  Google Scholar 

  15. Foley NH et al (2010) MicroRNA-184 inhibits neuroblastoma cell survival through targeting the serine/threonine kinase AKT2. Mol Cancer 9:83

    Article  PubMed  Google Scholar 

  16. Mestdagh P et al (2010) The miR-17-92 microRNA cluster regulates multiple components of the TGF-β pathway in neuroblastoma. Mol Cell 40:762–773

    Article  PubMed  CAS  Google Scholar 

  17. Buechner J et al (2011) Tumour-suppressor microRNAs let-7 and miR-101 target the proto-oncogene MYCN and inhibit cell proliferation in MYCN-amplified neuroblastoma. Br J Cancer 105:296–303

    Article  PubMed  CAS  Google Scholar 

  18. Wei JS et al (2008) The MYCN oncogene is a direct target of miR-34a. Oncogene 27:5204–5213

    Article  PubMed  CAS  Google Scholar 

  19. Tivnan A et al (2011) MicroRNA-34a is a potent tumor suppressor molecule in vivo in neuroblastoma. BMC Cancer 11:33

    Article  PubMed  CAS  Google Scholar 

  20. Foley NH et al (2011) MicroRNAs 10a and 10b are potent inducers of neuroblastoma cell differentiation through targeting of nuclear receptor corepressor 2. Cell Death Differ 18:1089–1098

    Article  PubMed  CAS  Google Scholar 

  21. Griffiths-Jones S (2004) The microRNA registry. Nucleic Acids Res 32:D109–D111

    Article  PubMed  CAS  Google Scholar 

  22. Jiang J et al (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Res 33:5394–5403

    Article  PubMed  CAS  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  24. Cartea ME et al (2010) Phenolic compounds in Brassica vegetables. Molecules 16:251–280

    Article  PubMed  Google Scholar 

  25. Li Y et al (2010) Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharm Res 27:1027–1041

    Article  PubMed  Google Scholar 

  26. Wu BT et al (2005) The apoptotic effect of green tea (−)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the Cdk2 pathway. J Agric Food Chem 53:5695–5701

    Article  PubMed  CAS  Google Scholar 

  27. Fang M et al (2003) Tea polyphenol (−)-epigallocatechin-3-gallate inhibits DNA methyltransferase and reactivates methylation-silenced genes in cancer cell lines. Cancer Res 63:7563–7570

    PubMed  CAS  Google Scholar 

  28. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  29. Shimizu M et al (1999) Clear cell carcinoma has an expression pattern of cell cycle regulatory molecules that is unique among ovarian adenocarcinomas. Cancer 85:669–677

    Article  PubMed  CAS  Google Scholar 

  30. Wilkinson JC et al (2004) Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs). A caspase-independent mechanism for apoptotic inhibition. J Biol Chem 279:51082–51090

    Article  PubMed  CAS  Google Scholar 

  31. Susin SA et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446

    Article  PubMed  CAS  Google Scholar 

  32. Daugas E et al (2000) Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett 476:118–123

    Article  PubMed  CAS  Google Scholar 

  33. Das A et al (2006) Mechanism of apoptosis with the involvement of calpain and caspase cascades in human malignant neuroblastoma SH-SY5Y cells exposed to flavonoids. Int J Cancer 119:2575–2585

    Article  PubMed  CAS  Google Scholar 

  34. Karmakar S et al (2006) Activation of multiple molecular mechanisms for apoptosis in human malignant glioblastoma T98G and U87MG cells treated with sulforaphane. Neuroscience 141:1265–1280

    Article  PubMed  CAS  Google Scholar 

  35. Karmakar S et al (2007) Combination of all-trans retinoic acid and taxol regressed glioblastoma T98G xenografts in nude mice. Apoptosis 12:2077–2087

    Article  PubMed  CAS  Google Scholar 

  36. Ray SK et al (2000) Oxidative stress and Ca2+ influx upregulate calpain and induce apoptosis in PC12 cells. Brain Res 852:326–334

    Article  PubMed  CAS  Google Scholar 

  37. Mitamura S et al (1998) Cytosolic nuclease activated by caspase-3 and inhibited by DFF-45. Biochem Biophys Res Commun 243:480–484

    Article  PubMed  CAS  Google Scholar 

  38. Sakahira H et al (1998) Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 391:96–99

    Article  PubMed  CAS  Google Scholar 

  39. Chen Y, Stallings RL (2007) Differential patterns of microRNA expression in neuroblastoma are correlated with prognosis, differentiation, and apoptosis. Cancer Res 67:976–983

    Article  PubMed  CAS  Google Scholar 

  40. Das A et al (2010) Flavonoids activated caspases for apoptosis in human glioblastoma T98G and U87MG cells but not in human normal astrocytes. Cancer 116:164–176

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant (R01 NS65456) from the National Institutes of Health (Bethesda, MD, USA) and another grant (SCIRF-11-002) from the South Carolina Spinal Cord Injury Research Foundation (Columbia, SC, USA).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, M., Ai, W., Banik, N.L. et al. Overexpression of miR-7-1 Increases Efficacy of Green Tea Polyphenols for Induction of Apoptosis in Human Malignant Neuroblastoma SH-SY5Y and SK-N-DZ Cells. Neurochem Res 38, 420–432 (2013). https://doi.org/10.1007/s11064-012-0936-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-012-0936-5

Keywords

Navigation