Skip to main content
Log in

Post-Treatment with Voltage-Gated Na+ Channel Blocker Attenuates Kainic Acid-Induced Apoptosis in Rat Primary Hippocampal Neurons

  • ORIGINAL PAPER
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Injection of rats with kainic acid (KA), a non-N-methyl-d-aspartate (NMDA) type glutamate receptor agonist, induces recurrent (delayed) convulsive seizures and subsequently hippocampal neurodegeneration, which is reminiscent of human epilepsy. The protective effect of anti-epileptic drugs on seizure-induced neuronal injury is well known; however, molecular basis of this protective effect has not yet been elucidated. In this study, we investigated the effect and signaling mediators of voltage-gated Na+ channel blockers (Lamotrigine, Rufinamide, Oxcarbazepine, Valproic Acid, and Zonisamide) on KA-induced apoptosis in rat primary hippocampal neurons. Exposure of hippocampal neurons to 10 μM KA for 24 h caused significant increases in morphological and biochemical features of apoptosis, as determined by Wright staining and ApopTag assay, respectively. Analyses showed increases in expression and activity of cysteine proteases, production of reactive oxygen species (ROS), intracellular free [Ca2+], and Bax:Bcl-2 ratio during apoptosis. Cells exposed to KA for 15 min were then treated with Lamotrigine, Rufinamide, Oxcarbazepine, Valproic Acid, or Zonisamide. Post-treatment with one of these anti-epileptic drugs (500 nM) attenuated production of ROS and prevented apoptosis in hippocampal neurons. Lamotrigine, Rufinamide, and Oxcarbazepine appeared to be less protective when compared with Valproic Acid or Zonisamide. This difference may be due to blockade of T-type Ca2+ channels also by Valproic Acid and Zonisamide. Our findings thus suggest that the anti-epileptic drugs that block both Na+ channels and Ca2+ channels are significantly more effective than agents that block only Na+ channels for attenuating seizure-induced hippocampal neurodegeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Fuerst D, Shah J, Shah A et al (2003) Hippocampal sclerosis is a progressive disorder: a longitudinal volumetric MRI study. Ann Neurol 53:413–416

    Article  PubMed  Google Scholar 

  2. Leite JP, Bortolotto ZA, Cavalheiro EA (1990) Spontaneous recurrent seizures in rats: an experimental model of partial epilepsy. Neurosci Biobehav Rev 14:511–517

    Article  CAS  PubMed  Google Scholar 

  3. Scharfman HE (2007) The neurobiology of epilepsy. Curr Neurol Neurosci Rep 7:348–354

    Article  CAS  PubMed  Google Scholar 

  4. Williams PA, Hellier JL, White AM et al (2007) Development of spontaneous seizures after experimental status epilepticus: implications for understanding epileptogenesis. Epilepsia 48:157–163

    Article  PubMed  Google Scholar 

  5. Cannon SC (2002) Sodium channel gating: no margin for error. Neuron 34:853–854

    Article  CAS  PubMed  Google Scholar 

  6. Alekov AK, Rahman MM, Mitrovic N et al (2001) Enhanced inactivation and acceleration of activation of the sodium channel associated with epilepsy in man. Eur J Neurosci 13:2171–2176

    Article  CAS  PubMed  Google Scholar 

  7. Spampanato J, Escayg A, Meisler MH et al (2001) Functional effects of two voltage-gated sodium channel mutations that cause generalized epilepsy with febrile seizures plus type 2. J Neurosci 21:7481–7490

    CAS  PubMed  Google Scholar 

  8. Catterall WA (1986) Molecular properties of voltage-sensitive sodium channels. Annu Rev Biochem 55:953–985

    Article  CAS  PubMed  Google Scholar 

  9. Mantegazza M, Curia G, Biagini G et al (2010) Voltage-gated sodium channels as therapeutic targets in epilepsy and other neurological disorders. Lancet Neurol 9:413–424

    Article  CAS  PubMed  Google Scholar 

  10. van Lookeren Campagne M, Lucassen PJ, Vermeulen JP et al (1995) NMDA and kainate induce internucleosomal DNA cleavage associated with both apoptotic and necrotic cell death in the neonatal rat brain. Eur J Neurosci 7:1627–1640

    Article  PubMed  Google Scholar 

  11. Urenjak J, Obrenovitch TP (1998) Neuroprotection–rationale for pharmacological modulation of Na+-channels. Amino Acids 14:151–158

    Article  CAS  PubMed  Google Scholar 

  12. Kim DH, Yoon BH, Jung WY et al (2010) Sinapic acid attenuates kainic acid-induced hippocampal neuronal damage in mice. Neuropharmacology 59:20–30

    Article  CAS  PubMed  Google Scholar 

  13. Ben-Ari Y, Cossart R (2000) Kainate, a double agent that generates seizures: two decades of progress. Trends Neurosci 23:580–587

    Article  CAS  PubMed  Google Scholar 

  14. Cavalheiro EA, Fernandes MJ, Turski L et al (1994) Spontaneous recurrent seizures in rats: amino acid and monoamine determination in the hippocampus. Epilepsia 35:01–11

    Article  CAS  Google Scholar 

  15. Bi X, Chang V, Siman R et al (1996) Regional distribution and time-course of calpain activation following kainate-induced seizure activity in adult rat brain. Brain Res 726:98–108

    Article  CAS  PubMed  Google Scholar 

  16. Araújo IM, Ambrósio AF, Leal EC et al (2003) Neuronal nitric oxide synthase proteolysis limits the involvement of nitric oxide in kainate-induced neurotoxicity in hippocampal neurons. J Neurochem 85:791–800

    Article  PubMed  Google Scholar 

  17. Stucki BL, Matzelle DD, Ray SK, et al. (2004) Upregulation of calpain in neuronal apoptosis in kainic acid induced seizures in rats, ASN Annual Meeting, August 14-19, DP1-01

  18. Lee SH, Chun W, Kong PJ et al (2006) Sustained activation of Akt by melatonin contributes to the protection against kainic acid-induced neuronal death in hippocampus. J Pineal Res 40:79–85

    Article  CAS  PubMed  Google Scholar 

  19. Nunez J (2008) Primary culture of hippocampal neurons from P0 newborn rats. J Vis Exp 19:895

    PubMed  Google Scholar 

  20. Sunanda RaoBS, Raju TR (1998) Corticosterone attenuates zinc-induced neurotoxicity in primary hippocampal cultures. Brain Res 791:295–298

    Article  CAS  PubMed  Google Scholar 

  21. Das A, McDowell M, Pava MJ et al (2010) The inhibition of apoptosis by melatonin in VSC4.1 motoneurons exposed to oxidative stress, glutamate excitotoxicity, or TNF-α toxicity involves membrane melatonin receptors. J Pineal Res 48:157–169

    Article  CAS  PubMed  Google Scholar 

  22. Das A, Sribnick EA, Wingrave JM et al (2005) Calpain activation in apoptosis of ventral spinal cord 4.1 (VSC4.1) motoneurons exposed to glutamate: calpain inhibition provides functional neuroprotection. J Neurosci Res 81:551–562

    Article  CAS  PubMed  Google Scholar 

  23. Waters SL, Sarang SS, Wang KK et al (1997) Calpains mediate calcium and chloride influx during the late phase of cell injury. J Pharmacol Exp Ther 283:1177–1184

    CAS  PubMed  Google Scholar 

  24. Devi PU, Manocha A, Vohora D (2008) Seizures, antiepileptics, antioxidants and oxidative stress: an insight for researchers. Expert Opin Pharmacother 9:3169–3177

    Article  CAS  PubMed  Google Scholar 

  25. Enns GM (2008) Neurologic damage and neurocognitive dysfunction in urea cycle disorders. Semin Pediatr Neurol 15:132–139

    Article  PubMed  Google Scholar 

  26. Henshall DC, Araki T, Schindler CK et al (2002) Activation of Bcl-2-associated death protein and counter-response of Akt within cell populations during seizure-induced neuronal death. J Neurosci 22:8458–8465

    CAS  PubMed  Google Scholar 

  27. Giusti P, Franceschini D, Petrone M et al (1996) In vitro and in vivo protection against kainate-induced excitotoxicity by melatonin. J Pineal Res 20:226–231

    Article  CAS  PubMed  Google Scholar 

  28. Tan DX, Manchester LC, Reiter RJ et al (1998) Melatonin protects hippocampal neurons in vivo against kainic acid-induced damage in mice. J Neurosci Res 54:382–389

    Article  CAS  PubMed  Google Scholar 

  29. Gao L (2010) An update on peptide drugs for voltage-gated calcium channels. Recent Pat CNS Drug Discov 5:14–22

    Article  CAS  PubMed  Google Scholar 

  30. Joëls M (2009) Stress, the hippocampus, and epilepsy. Epilepsia 50:586–597

    Article  PubMed  Google Scholar 

  31. Bilsland J, Harper S (2002) Caspases and neuroprotection. Curr Opin Investig Drugs 3:1745–1752

    CAS  PubMed  Google Scholar 

  32. Nagatomo I, Akasaki Y, Uchida M et al (2000) Effects of combined administration of zonisamide and valproic acid or phenytoin to nitric oxide production, monoamines and zonisamide concentrations in the brain of seizure-susceptible EL mice. Brain Res Bull 53:211–218

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was dedicated to honor Dr. Abel Lajtha, who had the foresight to establish this journal and significantly contributed new knowledge not only to basic neuroscience but also to medical neuroscience.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naren L. Banik.

Additional information

Special Issue: In Honor of Dr. Abel Lajtha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, A., McDowell, M., O’Dell, C.M. et al. Post-Treatment with Voltage-Gated Na+ Channel Blocker Attenuates Kainic Acid-Induced Apoptosis in Rat Primary Hippocampal Neurons. Neurochem Res 35, 2175–2183 (2010). https://doi.org/10.1007/s11064-010-0321-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-010-0321-1

Keywords

Navigation