Skip to main content

Advertisement

Log in

Effect of Purple Sweet Potato Anthocyanins on β-Amyloid-Mediated PC-12 Cells Death by Inhibition of Oxidative Stress

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Amyloid-beta peptide (Aβ) is known to induce the redox imbalance, mitochondrial dysfunction and caspase activation, resulting in neuronal cell death. Treatment with antioxidants provided a new therapeutic strategy for Alzheimer’s disease (AD) patients. Here we investigate the effects of purple sweet potato anthocyanins (PSPA), the known strong free radical scavengers, on Aβ toxicity in PC12 cells. The results showed that pretreatment of PC12 cells with PSPA reduced Aβ-induced toxicity, intracellular reactive oxygen species (ROS) generation and lipid peroxidation dose-dependently. In parallel, cell apoptosis triggered by Aβ characterized with the DNA fragmentation and caspase-3 activity were also inhibited by PSPA. The concentration of intracellular Ca2+ and membrane potential loss associated with cell apoptosis were attenuated by PSPA. These results suggested that PSPA could protect the PC-12 cell from Aβ-induced injury through the inhibition of oxidative damage, intracellular calcium influx, mitochondria dysfunction and ultimately inhibition of cell apoptosis. The present study indicates that PSPA may be a promising approach for the treatment of AD and other oxidative-stress-related neurodegenerative diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PSPA:

Purple sweet potato anthocyanins

Aβ:

β-Amyloid

AD:

Alzheimer’s disease

PC12:

Pheochromocytoma cells

DMSO:

Dimethylsulfoxide

DCF-DA:

Dichlorofluorescin diacetate

MDA:

Malonyl dialdehyde

MTT:

3(4,5-dimethylthiazol-2yl)2,5-diphenyl-2H-tetrazolium bromide

OD:

Optical density

PBS:

Phosphate-buffered saline

ROS:

Reactive oxygen species

LPO:

Lipid peroxidation

RFU:

Relative fluorescence unit

[Ca2+]i:

Changes in intracellular free calcium levels

References

  1. Selkoe DJ (2002) Alzheimer’s disease is a synaptic failure. Science 298:789–791

    Article  CAS  PubMed  Google Scholar 

  2. Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW, Glabe CG (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    Article  CAS  PubMed  Google Scholar 

  3. Butterfield DA, Drake J, Pocernich C, Castegna A (2001) Evidence of oxidative damage in Alzheimer’s disease brain: central role for amyloid beta-peptide. Trends Mol Med 7(12):548–554

    Article  CAS  PubMed  Google Scholar 

  4. Behl C (1997) Amyloid beta-protein toxicity and oxidative stress in Alzheimer’s disease. Cell Tissue Res 290(3):471–480

    Article  CAS  PubMed  Google Scholar 

  5. Butterfield DA, Castegna A, Lauderback CM, Drake J (2002) Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol Aging 23(5):655–664

    Article  PubMed  Google Scholar 

  6. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463

    Article  CAS  PubMed  Google Scholar 

  7. Mancuso M, Orsucci D, Siciliano G, Murri L (2008) Mitochondria, mitochondrial DNA and Alzheimer’s disease. What comes first? Curr Alzheimer Res 5(5):457–468

    Article  CAS  PubMed  Google Scholar 

  8. Zhao B (2009) Natural antioxidants protect neurons in Alzheimer’s disease and Parkinson’s disease. Neurochem Res 34(4):630–638

    Article  CAS  PubMed  Google Scholar 

  9. Kähkönen MP, Heinonen M (2003) Antioxidant activity of anthocyanins and their aglycons. J Agric Food Chem 51(3):628–633

    Article  PubMed  CAS  Google Scholar 

  10. Prior RL, Wu X (2006) Anthocyanins: structural characteristics that result in unique metabolic patterns and biological activities. Free Radic Res 40(10):1014–1028

    Article  CAS  PubMed  Google Scholar 

  11. Galvano F, La Fauci L, Vitaglione P, Fogliano V, Vanella L, Felgines C (2007) Bioavailability, antioxidant and biological properties of the natural free-radical scavengers cyanidin and related glycosides. Ann Ist Super Sanita 43(4):382–393

    CAS  PubMed  Google Scholar 

  12. Wang H, Cao G, Prior RL (1997) Oxygen radical absorbing capacity of anthocyanins. J Agric Food Chem 45:304–309

    Article  CAS  Google Scholar 

  13. Wu X, Cao G, Prior RL (2002) Absorption and metabolism of anthocyanins in elderly women after consumption of elderberry or blueberry. J Nutr 132(7):1865–1871

    CAS  PubMed  Google Scholar 

  14. Talavéra S, Felgines C, Texier O, Besson C, Manach C, Lamaison JL, Rémésy C (2004) Anthocyanins are efficiently absorbed from the small intestine in rats. J Nutr 134(9):2275–2279

    PubMed  Google Scholar 

  15. Philpott M, Gould KS, Lim C, Ferguson LR (2004) In situ and in vitro antioxidant activity of sweet potato anthocyanins. J Agric Food Chem 52(6):1511–1513

    Article  CAS  PubMed  Google Scholar 

  16. Steed LE, Truong VD (2008) Anthocyanin content, antioxidant activity, and selected physical properties of flowable purple-fleshed sweetpotato purees. J Food Sci 73(5):S215–S221

    Article  CAS  PubMed  Google Scholar 

  17. Suda I, Oki T, Masuda M, Nishiba Y, Furuta S, Matsugano K, Sugita K, Terahara N (2002) Direct absorption of acylated anthocyanin in purple-fleshed sweet potato into rats. J Agric Food Chem 50(6):1672–1676

    Article  CAS  PubMed  Google Scholar 

  18. Harada K, Kano M, Takayanagi T, Yamakawa O, Ishikawa F (2004) Absorption of acylated anthocyanins in rats and humans after ingesting an extract of Ipomoea batatas purple sweet potato tuber. Biosci Biotechnol Biochem 68(7):1500–1507

    Article  CAS  PubMed  Google Scholar 

  19. Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F (2005) Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 69(5):979–988

    Article  CAS  PubMed  Google Scholar 

  20. Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34(8):1100–1110

    Article  CAS  PubMed  Google Scholar 

  21. Le Bel C, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231

    Article  CAS  Google Scholar 

  22. Mihara M, Uchiama M (1978) Determination of malonaldheyde precursor in tissues by thiobarbituric acid test. Anal Biochem 86:271–278

    Article  CAS  PubMed  Google Scholar 

  23. Telford WG, King LE, Fraker PJ (1991) Evaluation of glucocorticoid-induced DNA fragmentation in mouse thymocytes by flow cytometry. Cell Prolif 24(5):447–459

    Article  CAS  PubMed  Google Scholar 

  24. Aoshima H, Satoh T, Sakai N, Yamada M, Enokido Y, Ikeuchi T, Hatanaka H (1997) Generation of free radicals during lipid hydroperoxide-triggered apoptosis in PC12h cells. Biochim Biophys Acta 1345(1):35–42

    CAS  PubMed  Google Scholar 

  25. Zhang Y, Zhao B (2003) Green tea polyphenols enhance sodium nitroprusside-induced neurotoxicity in human neuroblastoma SH-SY5Y cells. J Neurochem 86(5):1189–1200

    Article  CAS  PubMed  Google Scholar 

  26. Lorenzo A, Yankner BA (1996) Amyloid fibril toxicity in Alzheimer’s disease and diabetes. Ann N Y Acad Sci 777:89–95

    Article  CAS  PubMed  Google Scholar 

  27. Tohda C, Tamura T, Matsuyama S, Komatsu K (2006) Promotion of axonal maturation and prevention of memory loss in mice by extracts of Astragalus mongholicus. Br J Pharmacol 149(5):532–541

    Article  CAS  PubMed  Google Scholar 

  28. Hodnick WF, Kung FS, Roettger WJ, Bohmont CW, Pardini RS (1986) Inhibition of mitochondrial respiration and production of toxic oxygen radicals by flavonoids. A structure–activity study. Biochem Pharmacol 35:2345–2357

    Article  CAS  PubMed  Google Scholar 

  29. Hodnick WF, Milosavljevic EB, Nelson JH, Pardini RS (1998) Electrochemistry of flavonoids: relationships between redox potentials, inhibition of mitochondrial respiration, and production of oxygen radicals by flavonoids. Biochem Pharmacol 37:2607–2611

    Article  Google Scholar 

  30. Miura YH, Tomita I, Watanabe T, Hirayama T, Fukui S (1998) Active oxygens generation by flavonoids. Biol Pharm Bull 21:93–96

    CAS  PubMed  Google Scholar 

  31. Praticò D, Uryu K, Leight S, Trojanoswki JQ, Lee VM (2001) Increased lipid peroxidation precedes amyloid plaque formation in an animal model of Alzheimer amyloidosis. J Neurosci 21(12):4183–4187

    PubMed  Google Scholar 

  32. Montiel T, Quiroz-Baez R, Massieu L, Arias C (2006) Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. Exp Neurol 200(2):496–508

    Article  CAS  PubMed  Google Scholar 

  33. Eckert A, Marques CA, Keil U, Schüssel K, Müller WE (2003) Increased apoptotic cell death in sporadic and genetic Alzheimer’s disease. Ann N Y Acad Sci 1010:604–609

    Article  CAS  PubMed  Google Scholar 

  34. He LM, Chen LY, Lou XL, Qu AL, Zhou Z, Xu T (2002) Evaluation of beta-amyloid peptide 25–35 on calcium homeostasis in cultured rat dorsal root ganglion neurons. Brain Res 939(1–2):65–75

    Article  CAS  PubMed  Google Scholar 

  35. Canevari L, Abramov AY, Duchen MR (2004) Toxicity of amyloid beta peptide: tales of calcium, mitochondria, and oxidative stress. Neurochem Res 29(3):637–650

    Article  CAS  PubMed  Google Scholar 

  36. Reddy PH (2007) Mitochondrial dysfunction in aging and Alzheimer’s disease: strategies to protect neurons. Antioxid Redox Signal 9(10):1647–1658

    Article  CAS  PubMed  Google Scholar 

  37. Lustbader JW, Cirilli M, Lin C, Xu HW, Takuma K, Wang N, Caspersen C, Chen X, Pollak S, Chaney M, Trinchese F, Liu S, Gunn-Moore F, Lue LF, Walker DG, Kuppusamy P, Zewier ZL, Arancio O, Stern D, Yan SS, Wu H (2004) ABAD directly links Abeta to mitochondrial toxicity in Alzheimer’s disease. Science 304(5669):448–452

    Article  CAS  PubMed  Google Scholar 

  38. Okajima T, Nakamura K, Zhang H, Ling N, Tanabe T, Yasuda T, Rosenfeld RG (1992) Sensitive colorimetric bioassays for insulin-like growth factor (IGF) stimulation of cell proliferation and glucose consumption: use in studies of IGF analogs. Endocrinology 130(4):2201–2212

    Article  CAS  PubMed  Google Scholar 

  39. Harada J, Sugimoto M (1999) Activation of caspase-3 in beta-amyloid-induced apoptosis of cultured rat cortical neurons. Brain Res 842(2):311–323

    Article  CAS  PubMed  Google Scholar 

  40. Heo HJ, Lee CY (2005) Strawberry and its anthocyanins reduce oxidative stress-induced apoptosis in PC12 cells. J Agric Food Chem 53(6):1984–1989

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Science and Technology Bureau of Qingdao (No. 03-2-JZ-03) and the Science Foundation of Shandong Provincial Educational Department, China (Grant No. J04E17).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunbo Wang.

Additional information

Junli Ye and Xiangjun Meng contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ye, J., Meng, X., Yan, C. et al. Effect of Purple Sweet Potato Anthocyanins on β-Amyloid-Mediated PC-12 Cells Death by Inhibition of Oxidative Stress. Neurochem Res 35, 357–365 (2010). https://doi.org/10.1007/s11064-009-0063-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-009-0063-0

Keywords

Navigation