Skip to main content

Advertisement

Log in

Clinical and Neurophysiological Effects of the Therapeutic Combination of High-Frequency Rhythmic Transcranial Magnetic Stimulation of the Motor and Frontal Cortex in Parkinson’s Disease

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Objective. To run a parallel placebo-controlled trial to assess the effects of navigated combined high-frequency rhythmic transcranial magnetic stimulation (rTMS) of the primary motor (bilateral) and left dorsolateral prefrontal cortex on the clinical dynamics of the symptoms of Parkinson’s disease (PD). Materials and methods. A total of 46 patients took part in the trial and were randomized to active (n = 23) and placebo (n = 23) rTMS. Navigated therapeutic and placebo rTMS were performed for areas of the primary motor and left dorsolateral prefrontal cortex at a frequency of 10 Hz (20 daily sessions for three weeks). Changes in clinical symptoms were assessed on the MDS-UPDRS (parts I–IV) before sessions, immediately after 20 sessions, and 4–6 weeks after courses of rTMS. Nonmotor and mental symptoms were evaluated on the Hamilton depression scale (HDRS-17), the Beck scale (BDI-II), the depression, anxiety, and stress scale (DASS-21), and the mini mental state examination (MMSE). Results. Statistically signifi cant therapeutic effects were obtained with rTMS as compared with placebo, with greater reductions in total scores on the MDS-UPDRS (parts I–IV), the severity of nonmotor (part I)and motor (Part III, with greater therapeutic effects for rigidity, bradykinesia, and postural instability) signs, as well as the severity of motor complications of dopamine replacement therapy (part IV). The effects of rTMS on motor symptoms persisted at four weeks after completion of stimulation courses. It is also important to note that the signifi cant improvements in the rTMS and placebo groups were similar in terms of the magnitudes of reductions in the severity of daily motor symptoms (part II of the MDS-UPDRS) and increases in the total scores on the MMSE, HDRS, BDI-II, and DASS-21. Conclusions. Combined high-frequency rTMS of two areas of the cerebral cortex – the motor (bilaterally) and the left dorsolateral prefrontal – had positive therapeutic effects on the motor and affective symptoms of PD which were signifi cantly greater than obtained using placebo stimulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Pringsheim, N. Jette, A. Frolkis, and T. D. Steeves, “The prevalence of Parkinson’s disease: A systematic review and meta-analysis,” Mov. Disord., 29, 1583–1590 (2014), https://doi.org/10.1002/mds.25945.

    Article  Google Scholar 

  2. D. Aarsland, B. Creese, and K. R. Chaudhuri, “A new tool to identify patients with Parkinson’s disease at increased risk of dementia,” Lancet Neurol., 16, No. 8, 576–578 (2017), https://doi.org/https://doi.org/10.1016/S1474-4422(17)30170-9.

  3. W. He, P. Y. Fong, T. W. H. Leung, and Y. Z. Huang, “Protocols of non-invasive brain stimulation for neuroplasticity induction,” Neurosci. Lett., 719, 133437 (2020), https://doi.org/10.1016/j.neulet.2018.02.045.

    Article  CAS  Google Scholar 

  4. A. V. Chervyakov, A. Y. Chernyavsky, D. O. Sinitsyn, and M. A. Piradov, “Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation,” Front. Hum. Neurosci., 9, 303 (2015), https://doi.org/10.3389/fnhum.2015.00303.

    Article  Google Scholar 

  5. Z. Peng, C. Zhou, S. Xue, et al., “Mechanism of repetitive transcranial magnetic stimulation for depression,” Shanghai Arch. Psychiatry, 30, No. 2, 84–92 (2018), https://doi.org/10.11919/j.issn.1002-0829.217047.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Yulug, L. Hanoglu, E. Kilic, et al., “The neuroprotective role of repetitive transcranial magnetic stimulation (rTMS) for neurodegenerative diseases: A short review on experimental studies,” Mini. Rev. Med. Chem., 16, 1269 (2016), https://doi.org/10.2174/13895575166.66160523145154.

    Article  CAS  Google Scholar 

  7. L. Dinkelbach, M. Brambilla, R. Manenti, and A. K. Brem, “Noninvasive brain stimulation in Parkinson’s disease: Exploiting crossroads of cognition and mood,” Neurosci. Biobehav. Rev., 75, 407–418 (2017), https://doi.org/10.1016/j.neubiorev.2017.01.021.

    Article  Google Scholar 

  8. P. S. Boggio, F. Fregni, F. Bermpohl, et al., “Effect of repetitive TMS and fl uoxetine on cognitive function in patients with Parkinson’s disease and concurrent depression,” Mov. Disord., 20, No. 9, 1178–1184 (2005), https://doi.org/10.1002/mds.20508.

    Article  Google Scholar 

  9. H. Kimura, M. Kurimura, K. Kurokawa, et al., “A comprehensive study of repetitive transcranial magnetic stimulation in Parkinson’s disease,” ISRN Neurology, 2011, 845453 (2011), https://doi.org/10.5402/2011/845453.

    Article  Google Scholar 

  10. R. Manenti, M. Brambilla, A. Benussi, et al., “Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy,” Mov. Disord., 31, 715–724 (2016), https://doi.org/10.1002/mds.26561.

    Article  Google Scholar 

  11. D. H. Benninger, K. Iseki, S. Kranick, et al., “Controlled study of 50-Hz repetitive transcranial magnetic stimulation for the treatment of Parkinson disease,” Neurorehabil. Neural Repair, 26, No. 9, 1096–1105 (2012), https://doi.org/10.1177/1545968312445636.

    Article  Google Scholar 

  12. L. Cocchi, A. Zalesky, Z. Nott, et al., “Transcranial magnetic stimulation in obsessive-compulsive disorder: A focus on network mechanisms and state dependence,” NeuroImage Clin, 19, 661–674 (2018), https://doi.org/10.1016/j.nicl.2018.05.029.

    Article  Google Scholar 

  13. J. P. Lefaucheur, N. André-Obadia, A. Antal, et al., “Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS),” Clin. Neurophysiol., 125, No. 11, 2150–2206 (2014), https://doi.org/10.1016/j.clinph.2014.05.021.

    Article  Google Scholar 

  14. Y. Shirota, H. Ohtsu, M. Hamada, et al., “Supplementary motor area stimulation for Parkinson disease A randomized controlled study,” Neurology, 80, No. 15, 1400–1405 (2013), https://doi.org/10.1212/WNL.0b013e31828c2f66.

    Article  Google Scholar 

  15. A. M. Goodwill, J. A. G. Lum, A. M. Hendy, et al., “Using non-invasive transcranial stimulation to improve motor and cognitive function in Parkinson’s disease: a systematic review and meta-analysis,” Sci. Rep., 7, 14840 (2017), https://doi.org/10.1038/s41598-017-13260-z.

    Article  Google Scholar 

  16. T. Maruo, K. Hosomi, T. Shimokawa, et al., “High-frequency repetitive transcranial magnetic stimulation over the primary foot motor area in Parkinson’s disease,” Brain Stimul., 6, No. 6, 884–891 (2013), https://doi.org/10.1016/j.brs.2013.05.002.

    Article  Google Scholar 

  17. A. C. Lanoue, G. J. Blatt, and J. J. Soghomonian, “Decreased parvalbumin mRNA expression in dorsolateral prefrontal cortex in Parkinson’s disease,” Brain Res., 1531, 37–47 (2013), https://doi.org/10.1016/j.brainres.2013.07.025.

    Article  CAS  Google Scholar 

  18. C. Huang, C. Tang, A. Feigin, et al., “Changes in network activity with the progression of Parkinson’s disease,” Brain, 130, No. 07, 1834–1846 (2007), https://doi.org/10.1093/brain/awm086.

    Article  Google Scholar 

  19. Y. Hosokai, Y. Nishio, K. Hirayama, et al., “Distinct patterns of regional cerebral glucose metabolism in Parkinson’s disease with and without mild cognitive impairment,” Mov. Disord., 24, No. 6, 854–862 (2009), https://doi.org/10.1002/mds.22444.

    Article  Google Scholar 

  20. T. Hattori, S. Orimo, S. Aoki, et al., “Cognitive status correlates with white matter alteration in Parkinson’s disease,” Hum. Brain Mapp., 33, No. 3, 727–739 (2012), https://doi.org/10.1002/hbm.21245.

    Article  Google Scholar 

  21. T. R. Melzer, R. Watts, M. R. MacAskill, et al., “Grey matter atrophy in cognitively impaired Parkinson’s disease,” J. Neurol. Neurosurg. Psychiatry, 83, No. 2, 188–194 (2012), https://doi.org/10.1136/jnnp-2011-300828.

    Article  Google Scholar 

  22. E. Pal, F. Nagy, Z. Aschermann, et al., “The impact of left prefrontal repetitive transcranial magnetic stimulation on depression in Parkinson’s disease: A randomized, double-blind, placebo-controlled study,” Mov. Disord., 25, No. 14, 2311–2317 (2010), https://doi.org/10.1002/mds.23270.

    Article  Google Scholar 

  23. M. Yokoe, T. Mano, T. Maruo, et al., “The optimal stimulation site for high-frequency repetitive transcranial magnetic stimulation in Parkinson’s disease: A double-blind crossover pilot study,” J. Clin. Neurosci., 47, 72–78 (2018), https://doi.org/10.1016/j.jocn.2017.09.023.

    Article  Google Scholar 

  24. M. P. Lomarev, S. Kanchana, W. Bara-Jimenez, et al., “Placebocontrolled study of rTMS for the treatment of Parkinson’s disease,” Mov. Disord., 21, No. 3, 325–331 (2006), https://doi.org/10.1002/mds.20713.

    Article  Google Scholar 

  25. M. Brys, M. D. Fox, S. Agarwal, et al., “Multifocal repetitive TMS for motor and mood symptoms of Parkinson disease: a randomized trial,” Neurology, 10, 1108–1212 (2016), https://doi.org/10.1212/WNL.0000000000003279.

    Google Scholar 

  26. Y. H. Chou, P. T. Hickey, M. Sundman, et al., “Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and meta-analysis,” JAMA Neurol., 72, No. 4, 432–440 (2015), https://doi.org/10.1001/jamaneurol.2014.4380.

    Article  Google Scholar 

  27. A. J. Hughes, S. E. Daniel, L. Kilford, and A. J. Lees, “Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases,” J. Neurol. Neurosurg. Psychiatry, 55, No. 3, 181–184 (1992), https://doi.org/https://doi.org/10.1136/jnnp.55.3.181.

  28. M. M. Hoehn and M. D. Yahr, “Parkinsonism: onset, progression, and mortality,” Neurology, 17, No. 5, 427–442 (1967), https://doi.org/10.1212/01.wnl.0000405146.06300.91.

    Article  CAS  Google Scholar 

  29. C. L. Tomlinson, R. Stowe, S. Patel, et al., “Systematic review of levodopa dose equivalency reporting in Parkinson’s disease,” Mov. Disord., 25, No. 15, 2649–2653 (2010), https://doi.org/10.1002/mds.23429.

    Article  Google Scholar 

  30. C. G. Goetz, B. C. Tilley, S. R. Shaftman, et al. and the Movement Disorder Society UPDRS Revision Task Force, “Movement Disorder Society-sponsored revision of the Unifi ed Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results,” Mov. Disord., 23, No. 15, 2129–2170 (2008), https://doi.org/10.1002/mds.22340.

  31. A. T. Beck, C. H. Ward, M. Mendelson, et al., “An inventory for measuring depression,” Arch. Gen. Psychiatry, 4, No. 6, 561–571 (1961), https://doi.org/10.1001/archpsyc.1961.01710120031004.

    Article  CAS  Google Scholar 

  32. M. Hamilton, “A rating scale for depression,” J. Neurol. Neurosurg. Psychiatry, 23, No. 1, 56 (1960), https://doi.org/10.1136/jnnp.23.1.56.

    Article  CAS  Google Scholar 

  33. P. F. Lovibond and S. H. Lovibond, “The structure of negative emotional states: Comparison of the Depression Anxiety Stress Scales (DASS) with the Beck Depression and Anxiety Inventories,” Behav. Res. Ther., 33, No. 3, 335–343 (1995), https://doi.org/https://doi.org/10.1016/0005-7967(94)00075-U.

  34. P. M. Rossini, D. Burke, R. Chen, et al., “Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee,” Clin. Neurophysiol., 126, No. 6, 1071–1107 (2015), https://doi.org/10.1016/j.clinph.2015.02.001.

    Article  CAS  Google Scholar 

  35. A. V. Chervyakov, M. A. Piradov, M. A. Nazarova, et al., “Mapping of the motor representation of the abductor pollicis brevis in healthy volubnteers using navigated trnscranial magnetic stimulation with an NBS eXima Nexstim,” Ann. Klin. Eksperim. Nevrol., 6, No. 3, 14–17 (2012).

    Google Scholar 

  36. S. Groppa, A. Oliviero, A. Eisen, et al., “A practical guide to diagnostic transcranial magnetic stimulation: report of an IFCN committee,” Clin. Neurophysiol., 123, No. 5, 858–882 (2012), https://doi.org/10.1016/j.clinph.2012.01.010.

    Article  CAS  Google Scholar 

  37. L. L. Gao and T. Wu, “The study of brain functional connectivity in Parkinson’s disease,” Transl. Neurodegener., 5, 18 (2016), https://doi.org/https://doi.org/10.1186/s40035-016-0066-0.

  38. M. B. Ghabra, M. Hallett, and E. M. Wassermann, “Simultaneous repetitive transcranial magnetic stimulation does not speed fi ne movement in PD,” Neurology, 52, No. 4, 768–768 (1999), https://doi.org/10.1212/WNL.52.4.768.

    Article  CAS  Google Scholar 

  39. F. Tergau, E. M. Wassermann, W. Paulus, and U. Ziemann, “Lack of clinical improvement in patients with Parkinson’s disease after low and high frequency repetitive transcranial magnetic stimulation,” Electroencephalogr. Clin. Neurophysiol., 51, 281–288 (1999).

    CAS  Google Scholar 

  40. S. Pallanti and A. Marras, “Transcranial magnetic stimulation treatment for motor symptoms in Parkinson’s disease: A review of two decades of studies,” J. Alzh. Dis. Parkinson., 5, 191 (2015), https://doi.org/https://doi.org/10.4172/2161-0460.1000191.

  41. G. Koch, L. Brusa, C. Caltagirone, et al., “Subthalamic deep brain stimulation improves time perception in Parkinson’s disease,” NeuroReport, 15, No. 6, 1071–1073 (2004), https://doi.org/10.1097/00001756-200404290-00028.

    Article  Google Scholar 

  42. D. H. Benninger, B. D. Berman, E. Houdayer, et al., “Intermittent theta-burst transcranial magnetic stimulation for treatment of Parkinson disease,” Neurology, 76, No. 7, 601–609 (2011), https://doi.org/10.1212/WNL.0b013e31820ce6bb.

    Article  CAS  Google Scholar 

  43. I. Rektorova, S. Sedlackova, S. Telecka, et al., “Dorsolateral prefrontal cortex: A possible target for modulating dyskinesias in Parkinson’s disease by repetitive transcranial magnetic stimulation,” Int. J. Biomed. Imaging, 2008, 372125 (2008), https://doi.org/10.1155/2008/372125.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. I. Aftanas.

Additional information

Translated from Zhurnal Nevrologii i Psikhiatrii imeni S. S. Korsakova, Vol. 120, No. 5, Iss. 1, pp. 29–36, May, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aftanas, L.I., Brack, I.V., Kulikova, K.I. et al. Clinical and Neurophysiological Effects of the Therapeutic Combination of High-Frequency Rhythmic Transcranial Magnetic Stimulation of the Motor and Frontal Cortex in Parkinson’s Disease. Neurosci Behav Physi 51, 135–141 (2021). https://doi.org/10.1007/s11055-021-01048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-021-01048-8

Keywords

Navigation