Skip to main content
Log in

Size effects in parameters of both interatomic exchange interactions in Fe–Pt alloy nanoparticles and their superparamagnetism

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The objective of this study is to calculate the parameters of strong exchange interactions within magnetic nanoparticles and weak (dipolar + anisotropic) interactions for the patterns of nanoparticles injected into non-magnetic substrate. The Fe–Pt magnetic system was chosen as the best applicable for this purpose. However, computations done in this work may be extended to the other f.c.c. magnetic systems. In this paper, we estimated the parameters of exchange interactions within the magnetic Fe–Pt nanoparticles close to equiatomic composition with 4–10 nm in diameter. Size effect for exchange interaction parameters was found. Temperature dependences of spontaneous magnetizations for Fe and Pt subsystems of nanoparticles with different sizes at fixed equiatomic composition were obtained. Total magnetic energies of weak interactions between Fe and Pt nanoparticles injected different matrixes were also estimated. Magnetic moment ordering temperature was evaluated within the simple model for ordered and disordered Fe–Pt nanoparticles of various sizes (4–10 nm) separated by different interparticle distances (30–50 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Battle X, Labarta A (2002) Finite-size effects in fine particles: magnetic and transport properties. J Phys D 35:R15–R42

    Article  Google Scholar 

  • Beltran-Huarac J, Diaz-Diestra D (2016) Novel magneto-luminescent effect in LSMO/ZnS: mn nanocomposites at near-room temperature. Nanotech 27:085703–085713

    Article  Google Scholar 

  • Berry DC, Barmak K (2007) Effect of alloy composition on the thermodynamic and kinetic parameters of the A1 to L10 transformation in FePt, FeNiPt, and FeCuPt. J Appl Phys 102(024912–1):9

    Google Scholar 

  • Bouchard JP, Zérah PG (1993) Dipolar ferromagnetism: a monte carlo study. Phys Rev B 47:9095–9097

    Article  Google Scholar 

  • Buschow KHJ (2005) Concise encyclopedia of magnetic and superconducting materials, 2nd edn. Elsevier Ltd, Oxford

    Google Scholar 

  • Chepulskii RV, Butler WH (2005) Temperature and particle-size dependence of the equilibrium order parameter of Fe–Pt alloy. Phys Rev 72(134205):1–18

    Google Scholar 

  • Ethirajan A, Wiedwald U et al (2007) A micellar approach to magnetic ultra-high density data storage media-extending the limits of current colloidal methods. Adv Mater 19:406–410

    Article  Google Scholar 

  • Farle M, Baberschke K et al (1993) Thickness-dependent Curie temperature of Gd (0001)/W(110) and its dependence on the growth conditions. Phys Rev 47:11571–11574

    Article  Google Scholar 

  • Gao Y, Zhang XW et al (2010) Magnetic properties of Fe–Pt nanoparticles prepared by a micellar method. Nanoscale Res Lett 5:1–6

    Article  Google Scholar 

  • Hansen MF, Mørup S (1998) Models for the dynamics of interacting magnetic nanoparticles. J Magn Magn Mater 184:262–274

    Article  Google Scholar 

  • Ivanov OA, Solina LV et al (1979) Determination of anisotropy constant and magnetization saturation and magnetic properties of powders of ferrous-platinum alloy. Phys Met Metall 35:92–97

    Google Scholar 

  • Jones BA, Dutson JD et al (2006) Magnetic properties of Fe–Pt nanoparticles annealed with NaCl. IEEE Trans Magn 42:3066–3068

    Article  Google Scholar 

  • Kötitz R, Weitschies W et al (1999) Investigation of Brownian and Neél relaxation in magnetic fluids. J Magn Magn Mater 201:102–104

    Article  Google Scholar 

  • Koval Yu, Ponomarova S et al (2013) Thermal characteristics of phase transformations in Fe–Pt alloy. Tech Phys 58:994–998

    Article  Google Scholar 

  • Kumar CF, Mohammad F (2011) Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv Drug Deliv Rev 63:789–808

    Article  Google Scholar 

  • Lin X-M, Samia Anna CS (2006) Synthesis, assembly and physical properties of magnetic nanoparticles. J Magn Magn Mater 305:100–109

    Article  Google Scholar 

  • Liu PJ, Elkins J et al (2006) Phase transformation of Fe–Pt nanoparticles. IEEE Trans Magn 42:3036–3041

    Article  Google Scholar 

  • Lyubina J, Rellinghaus B, Gutfleisch O, Albrecht M (2005) Structure and magnetic properties of L10-ordered and Fe–Pt alloys and nanoparticles. In: Handbook of magnetic materials, vol 19. Elsevier, Amsterdam, pp. 291–407

  • Mørup S, Tronc E (1994) Superparamagnetic relaxation of weakly interacting particles. Phys Rev Lett 72:3278–3281

    Article  Google Scholar 

  • Mørup S, Bødker F et al (1995) Spin-glass-like ordering of the magnetic moments of interacting nanosized maghemite particles. Phys Rev B 52:287–294

    Article  Google Scholar 

  • Osaci M, Abrudean C et al (2007) Relaxation times in magnetic nanoparticles system and memory effects. Acta Phys Pol A 112:1203–1212

    Article  Google Scholar 

  • Pankhurst QA, Connolly J et al (2003) Applications of magnetic nanoparticles in biomedicine. Phys D 36:R167–R181

    Article  Google Scholar 

  • Ponomarova S, Tatarenko V et al (2014) Magnetic interactions in F.C.C. Fe–Pt alloys. IJMME 3:45–53

    Google Scholar 

  • Rellinghaus B, Mohn E et al (2006) On the L10 ordering kinetics in Fe–Pt nanoparticles. IEEE Trans Magn 42:3048–3050

    Article  Google Scholar 

  • Romano S (1994) Computer simulation study of a three-dimensional lattice-spin model with dipolar-type interactions. Phys Rev B 49:12287–12290

    Article  Google Scholar 

  • Rong C-B, Naddwana V, Naddwana V et al (2007) Bulk Fe–Pt/Fe3Pt nanocomposite magnets prepared by spark plasma sintering. J Appl Phys 101:09K5051–09K5053

    Google Scholar 

  • Rong C-B, Li D et al (2006) Size-dependent chemical and magnetic ordering in L10 Fe–Pt nanoparticles. Adv Mater 18:2984–2988

    Article  Google Scholar 

  • Skomski R (2004) Nanomagnetic scaling. J Magn Magn Mater 272–276:1476–1481

    Article  Google Scholar 

  • Skomski R (2008) Simple models of magnetism. Oxford Graduate Texts, Oxford

    Book  Google Scholar 

  • Solzi M, Pernechele C et al (2011) Non-interacting hard ferromagnetic L10 Fe–Pt nanoparticles embedded in a carbon matrix. J Mater Chem 21:18331–18338

    Article  Google Scholar 

  • Sort J, Suriñach S, Baró MD et al (2006) Adv Mater 18:466–470

    Article  Google Scholar 

  • Sumiyama K, Shiga M, Nakamura Y (1979) Magnetovolume effects in Fe–Pt invar alloys. J Magn Magn Mater 12:1–3

    Article  Google Scholar 

  • Sun S (2006) Recent advances in chemical synthesis, self-assembly, and applications of Fe–Pt nanoparticles. Adv Mater 18:393–403

    Article  Google Scholar 

  • Sun S, Murray CB et al (2000) Monodisperse Fe–Pt nanoparticles and ferromagnetic nanocrystal superlattices. Science 287:1989–1992

    Article  Google Scholar 

  • Tatarenko V, Bokoch S (2008) A semi-empirical parametrization of interatomic interactions based on the statistical-thermodynamical analysis of the data on radiation diffraction and phase equilibria in F.C.C.-Ni-Fe alloys. Solid State Phenom 138:303–318

    Article  Google Scholar 

  • Wiedwald U, Han L et al (2010) Preparation and characterization of supported magnetic nanoparticles prepared by reverse micelles. Beilstein J Nanotechnol 1:24–47

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Ponomarova.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interests regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponomarova, S.O., Tatarenko, V.A., Odnosum, V.V. et al. Size effects in parameters of both interatomic exchange interactions in Fe–Pt alloy nanoparticles and their superparamagnetism. J Nanopart Res 18, 213 (2016). https://doi.org/10.1007/s11051-016-3525-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-016-3525-8

Keywords

Navigation