Skip to main content
Log in

Aqueous-solution synthesis of uniform PbS nanocubes and their optical properties

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

PbS nanocubes with uniform size were generated conveniently in aqueous solution at 100 °C. The products were characterized by XRD, FESEM, TEM, UV–Vis–NIR, PL, DLS, Raman, and FT-IR techniques. The mean edge length of the nanocubes is 60 nm and is in high yield. UV–Vis–NIR absorption spectrum indicated that the sample exhibits a blue-shift from 3024 to 288 nm and PL spectrum also indicated that the sample exhibits a blue-shift from 3200 to 328 nm, compared with bulk PbS, respectively. Dark-field light scattering measurements showed that the nanocubes-scattered orange light have a broad absorption band around 610 nm. Such a special property demonstrates that the PbS nanocubes may find potential application in molecular imaging and in vivo cancer diagnosis and therapy. By investigating the intermediates of the reaction process, we observed the important coarse rod-like structures that formed by PbS particles attached to one another at the initial stage of reaction. Then the particle-joint structures decomposed and finally formed PbS nanocubes. Such a morphology evolution of PbS crystals could be summarized as “particle–rod–cube mechanism,” which might be model systems for understanding the growth process of other kinds of nanocubes and directing their synthesis.

Graphical Abstract

High-yield PbS nanocubes with an edge length of 60 nm were fabricated successfully in aqueous solution at 100 °C by the assistance of surfactant CTAB. It has been found that the reaction time, temperature, and CTAB play important roles in the formation of uniform PbS nanocubes. A possible growth mechanism called “particle–rod–cube” has been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Scheme 1

Similar content being viewed by others

References

  • Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270):1924–1926. doi:10.1126/science.272.5270.1924

    Article  Google Scholar 

  • Bakshi MS, Thakur P, Sachar S, Kaur G, Banipal TS, Possmayer F, Petersen NO (2007) Aqueous phase surfactant selective shape controlled synthesis of lead sulfide nanocrystals. J Phys Chem C 111(49):18087–18098. doi:10.1021/jp075477c

    Article  Google Scholar 

  • Bakshi MS, Kaur G, Possmayer F, Petersen NO (2008) Shape-controlled synthesis of poly(styrene sulfonate) and poly(vinylpyrolidone) capped lead sulfide nanocubes, bars, and threads. J Phys Chem C 112(13):4948–4953. doi:10.1021/jp711925b

    Article  Google Scholar 

  • Bao J, Xu D, Zhou XuZ (2002) An array of concentric composite nanostructure of metal nanowires encapsulated in zirconia nanotubes: preparation, characterization, and magnetic properties. Chem Mater 14(11):4709–4713. doi:10.1021/cm0201753

    Article  Google Scholar 

  • Bierman MJ, Lau YKA, Jin S (2007) Hyperbranched PbS and PbSe nanowires and the effect of hydrogen gas on their synthesis. Nano Lett 7(9):2907–2912. doi:10.1021/nl10714051

    Article  Google Scholar 

  • Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem Phys 80(9):4403–4407. doi:10.1063/1.447218

    Article  Google Scholar 

  • Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102. doi:10.1021/cr030063a

    Article  Google Scholar 

  • Cao H, Wang G, Zhang S, Zhang X (2006) Growth and photoluminescence properties of PbS nanocubes. Nanotechnology 17(13):3280–3287. doi:10.1088/0957-4484/17/13/034

    Article  Google Scholar 

  • Caswell KK, Bender CM, Murphy CJ (2003) Seedless, surfactantless wet chemical synthesis of silver nanowires. Nano Lett 3(5):667–669. doi:10.1021/nl10341178

    Article  Google Scholar 

  • Chen S, Truax LA, Sommers JM (2000) Alkanethiolate-protected PbS nanoclusters: synthesis, spectroscopic and electrochemical studies. Chem Mater 12(12):3864–3870. doi:10.1021/cm000653e

    Article  Google Scholar 

  • Chen HS, Wu SC, Huang MH (2014) Direct synthesis of size-tunable PbS nanocubes and octahedra and the pH effect on crystal shape control. Dalton Trans. doi:10.1039/c4dt03345k

    Google Scholar 

  • Chow A, Toomre D, Garrett W, Mellman I (2002) Dendritic cell maturation triggers retrograde MHC class II transport from lysosomes to the plasma membrane. Nature 418:988–994. doi:10.1038/nature01006

    Article  Google Scholar 

  • Cölfen H, Mann S (2003) Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew Chem Int Edn 42(21):2350–2365. doi:10.1002/anie.200200562

    Article  Google Scholar 

  • Colvin VL, Schlamp MC, Alivisatos AP (1994) Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370(6488):354–357. doi:10.1038/370354a0

    Article  Google Scholar 

  • Dhlamini MS, Terblans JJ, Ntwaeaborwa OM, Ngaruiya JM, Hillie KT, Botha JR, Swart HC (2008) Photoluminescence properties of powder and pulsed laser-deposited PbS nanoparticles in SiO2. J Lumin 128(12):1997–2003. doi:10.1016/j.jlumin.2008.06.016

    Article  Google Scholar 

  • Ding B, Shi M, Chen F, Zhou R, Deng M, Wang M, Chen HJ (2009) Shape-controlled syntheses of PbS submicro-/nano-crystals via hydrothermal method. J Cryst Growth 311(6):1533–1538. doi:10.1016/j.jcrysgro.2009.01.086

    Article  Google Scholar 

  • Dong L, Chu Y, Zhuo Y, Zhang W (2009) Two-minute synthesis of PbS nanocubes with high yield and good dispersibility at room temperature. Nanotechnology 20(12):125301. doi:10.1088/0957-4484/20/12/125301

    Article  Google Scholar 

  • Duan X, Huang Y, Agarwal R, Lieber CM (2003) Single-nanowire electrically driven lasers. Nature 421:241–245. doi:10.1038/nature01353

    Article  Google Scholar 

  • El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5(5):829–834. doi:10.1021/nl050074e

    Article  Google Scholar 

  • Gao MY, Yang Y, Yang B, Shen JJ (1995) Effect of the surface chemical modification on the optical properties of polymer-stabilized PbS nanoparticles. J Chem Soc Faraday Trans 91(22):4121–4125. doi:10.1039/FT9959104121

    Article  Google Scholar 

  • Ge JP, Wang J, Zhang HX, Wang X, Peng Q, Li YD (2005) Orthogonal PbS nanowire arrays and networks and their Raman scattering behavior. Chem Eur J 11(6):1889–1894. doi:10.1002/chem.200400633

    Article  Google Scholar 

  • Ghosh M, Raychaudhuri AK (2008) Shape transition in ZnO nanostructures and its effect on blue-green photoluminescence. Nanotechnology 19(44):445704. doi:10.1088/0957-4484/19/44/445704

    Article  Google Scholar 

  • Glasser L, Jones F (2009) Systematic thermodynamics of hydration (and of solvation) of inorganic solids. Inorg Chem 48(4):1661–1665. doi:10.1021/ic802101g

    Article  Google Scholar 

  • Gou L, Murphy CJ (2003) Solution-phase synthesis of Cu2O nanocubes. Nano Lett 3(2):231–234. doi:10.1021/nl0258776

    Article  Google Scholar 

  • Han W, Kohler-Redlich P, Scheu C, Ernst F, Rühle M, Grobert N, Terrones M, Kroto HW, Walton DRM (2000) Carbon nanotubes as nanoreactors for boriding iron nanowires. Adv Mater 12(18):1356–1359. doi:10.1002/1521-4095(200009)

    Article  Google Scholar 

  • Hou Y, Kondoh H, Ohta T (2009) PbS cubes with pyramidal pits: an example of etching growth. Cryst Growth Des 9(7):3119–3123. doi:10.1021/cg801013t

    Article  Google Scholar 

  • Hu J, Li L, Yang W, Manna L, Wang L, Alivisatos AP (2001) Linearly polarized emission from colloidal semiconductor quantum rod. Science 292(5524):2060–2063. doi:10.1126/science.1060810

    Article  Google Scholar 

  • Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. J Am Chem Soc 128(6):2115–2120. doi:10.1021/ja057254a

    Article  Google Scholar 

  • Hulteen JC, Martin CR (1997) A general template-based method for preparation of nanomaterials. J Mater Chem 7:1075–1087. doi:10.1039/A700027H

    Article  Google Scholar 

  • Hunt JM, Wisherd MP, Bonham LC (1950) Infrared absorption spectra of minerals and other inorganic compounds. Anal Chem 22(12):1478–1497. doi:10.1021/ac60048a006

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  Google Scholar 

  • Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13(18):1389–1393. doi:10.1002/1521-4095(200109)13:18<1389:AID-ADMA1389>3.0.CO;2-F

    Article  Google Scholar 

  • Jun Y, Lee JH, Choi J, Cheon JJ (2005) Symmetry-controlled colloidal nanocrystals: nonhydrolytic chemical synthesis and shape determining parameters. J Phys Chem B 109(31):14795–14806. doi:10.1021/jp052257v

    Article  Google Scholar 

  • Kane RS, Cohen RE, Silbey R (1996) Theoretical study of the electronic structure of PbS nanoclusters. J Phys Chem 100(19):7928–7932. doi:10.1021/jp952869n

    Article  Google Scholar 

  • Klein DL, Roth R, Lim AKL, Alivisatos AP, McEuen PL (1997) A single-electron transistor made from a cadmium selenide nanocrystal. Nature 389:699–701. doi:10.1038/39535

    Article  Google Scholar 

  • Krauss TD, Wise FW (1997) Raman-scattering study of exciton-phonon coupling in PbS nanocrystals. Phys Rev B 55(15):9860–9865. doi:10.1103/PhysRevB.55.9860

    Article  Google Scholar 

  • Krauss TD, Wise FW, Tanner DB (1996) Observation of coupled vibrational modes of a semiconductor nanocrystal. Phys Rev Lett 76(8):1376–1379. doi:10.1103/PhysRevLett.76.1376

    Article  Google Scholar 

  • Lee SM, Jun YW, Cho SN, Cheon JJ (2002) Single-crystalline star-shaped nanocrystals and their evolution programming the geometry of nano-building blocks. Chem Soc 124(38):11244–11245. doi:10.1021/ja026805j

    Article  Google Scholar 

  • Lifshitz E, Bashouti M, Kloper V, Kigel A, Eisen MS, Berger S (2003) Synthesis and characterization of PbSe quantum wires, multipods, quantum rods, and cubes. Nano Lett 3(6):857–862. doi:10.1021/nl0342085

    Article  Google Scholar 

  • Lim WP, Zhang Z, Low HY, Chin WS (2004) Preparation of Ag2S nanocrystals of predictable shape and size. Angew Chem Int Edn 116(42):5803–5807. doi:10.1002/ange.200460566

    Article  Google Scholar 

  • Liu Q, Ni YH, Yin G, Hong J, Xu Z (2005) High yield synthesis of PbS nanocubes using one-step solid-state reaction in the presence of an anionic surfactant. Mater Chem Phys 89(2–3):379–382. doi:10.1016/j.matchemphys.2004.09.017

    Article  Google Scholar 

  • Liu XM, Zhang XG, Fu SY (2006) Preparation of urchinlike NiO nanostructures and their electrochemical capacitive behaviors. Mater Res Bull 41(3):620–627. doi:10.1016/j.materresbull.2005.09.006

    Article  Google Scholar 

  • Loo C, Lowery A, Halas N, West J, Drezek R (2005) Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett 5(4):709–711. doi:10.1021/nl050127s

    Article  Google Scholar 

  • Ma YR, Qi LM, Ma JM, Cheng HM (2004) Hierarchical, star-shaped PbS crystals formed by a simple solution route. Cryst Growth Des 4(2):351–354. doi:10.1021/cg034174e

    Article  Google Scholar 

  • Machol JL, Wise FW, Patel R, Tanner DB (1994) Optical studies of IV–VI quantum dots. Physica A 207(1–3):427–434. doi:10.1016/0378-4371(94)90405-7

    Article  Google Scholar 

  • Manna L, Scher E, Kadavanich A, Alivisatos AP (2000) Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J Am Chem Soc 122(51):12700–12706. doi:10.1021/ja003055+

    Article  Google Scholar 

  • Mayers B, Gates B, Yin Y, Xia Y (2001) Large-scale synthesis of monodisperse nanorods of Se/Te alloys through a homogeneous nucleation and solution growth process. Adv Mater 13(18):1380–1384. doi:10.1002/1521-4095(200109)

    Article  Google Scholar 

  • Mcdonald SA, Konstantatos G, Zhang S, Cyr PW, Klem EJD, Levina L, Sargent EH (2005) Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nat Mater 4:138–142. doi:10.1038/nmat1299

    Article  Google Scholar 

  • Mirkin CA (2000) Programming the assembly of two- and three-dimensional architectures with DNA and nanoscale inorganic building blocks. Inorg Chem 39(11):2258–2272. doi:10.1021/ic991123r

    Article  Google Scholar 

  • Murray CB, Norris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 115(19):8706–8715. doi:10.1021/ja00072a025

    Article  Google Scholar 

  • Nanda KK, Sahu SN (2001) One-dimensional quantum confinement in electrodeposited PbS nanocrystalline semiconductors. Adv Mater 13(4):280–283. doi:10.1002/1521-4095(200102)

    Article  Google Scholar 

  • Navaneethan M, Nisha KD, Ponnusamy S, Muthamizhchelvan C (2009) Optical, structural and surface morphological studies of n-methylaniline capped lead sulphide nanoparticles. Rev Adv Mater Sci 21:217–224. doi:10.1103/PhysRevB.72.125110

    Google Scholar 

  • Nenadovice MT, Comor MI, Vasic V, Micic OI (1990) Transient bleaching of small lead sulfide colloids: influence of surface properties. J Phys Chem 94(16):6390–6396. doi:10.1021/j100379a044

    Article  Google Scholar 

  • Ni Y, Liu H, Wang F, Liang Y, Hong J, Ma X, Xu Z (2004) PbS crystals with clover-like structure: preparation, characterization, optical properties and influencing factors. Cryst Res Technol 39(3):200–206. doi:10.1002/crat.200310171

    Article  Google Scholar 

  • Pan ZW, Dai ZR, Wang ZL (2001) Nanobelts of semiconducting oxides. Science 291(5510):1947–1949. doi:10.1126/science.1058120

    Article  Google Scholar 

  • Parvathy NN, Pajonk GM, Rao AV (1997) Synthesis and study of quantum size effect, XRD and IR spectral properties of PbS nanocrystals doped in SiO2 xerogel matrix. J Cryst Growth 179(1–2):249–257. doi:10.1016/S0022-0248(97)00105-X

    Article  Google Scholar 

  • Parvathy NN, Rao AV, Pajonk GM (1998) Effects of temperature and sol-gel parameters on PbS crystallite sizes and their spectral and physical properties in a porous silica matrix. J Non-Cryst Solids 241(2–3):79–80. doi:10.1016/S0022-3093(98)00768-6

    Article  Google Scholar 

  • Patla I, Acharya S, Zeiri L, Israelachvili J, Efrima S, Golan Y (2007) Synthesis, two-dimensional assembly, and surface pressure-induced coalescence of ultranarrow PbS nanowires. Nano Lett 7(6):1459–1462. doi:10.1021/nl070001q

    Article  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291(5511):2115–2117. doi:10.1126/science.1058495

    Article  Google Scholar 

  • Qin AM, Fang YP, Zhao WX, Liu HQ (2005) Directionally dendritic growth of metal chalcogenide crystals via mild template-free solvothermal method. J Cryst Growth 283(1–2):230–241. doi:10.1016/j.jcrysgro.2005.05.056

    Article  Google Scholar 

  • Rao CNR, Vivekchand SRC, Biswas K, Govindaraj A (2007) Synthesis of inorganic nanomaterials. Dalton Trans 34:3728–3749. doi:10.1039/B708342D

    Article  Google Scholar 

  • Reddy GB, Dutta V, Pandya DK, Chopra KL (1981) Solution grown PbS/CdS multilayer stacks as selective absorbers. Solar Energy Mater 5(2):187–197. doi:10.1016/0165-1633(81)90030-7

    Article  Google Scholar 

  • Singh K, McLachlan AA, Marangoni DG (2009) Effect of morphology and concentration on capping ability of surfactant in shape controlled synthesis of PbS nano- and micro-crystals. Colloids Surf A 345(1–3):82–87. doi:10.1016/j.colsurfa.2009.04.033

    Article  Google Scholar 

  • Smith GD, Firth S, Clark RJH, Cardona M (2002) First-and second-order Raman spectra of galena (PbS). J Appl Phys 92(8):4375–4380. doi:10.1063/1.1505670

    Article  Google Scholar 

  • Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(5601):2176–2179. doi:10.1126/science.1077229

    Article  Google Scholar 

  • Tanori J, Pileni MP (1997) Control of the shape of copper metallic particles by using a colloidal system as template. Langmuir 13(4):639–646. doi:10.1021/la9606097

    Article  Google Scholar 

  • Trindade T, O’Brien P, Zhang XM, Motevalli M (1997) Synthesis of PbS nanocrystallites using a novel single molecule precursors approach: X-ray single-crystal structure of Pb(S2CNEtPri)2. J Mater Chem 7:1011–1016. doi:10.1039/A608579B

    Article  Google Scholar 

  • Vaseem M, Umar A, Kim SH, Hahn YB (2008) Low-temperature synthesis of flower-shaped CuO nanostructures by solution process: formation mechanism and structural properties. J Phys Chem C 112(15):5729–5735. doi:10.1021/jp710358j

    Article  Google Scholar 

  • Wang ZL (2000) Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J Phys Chem B 104(6):1153–1175. doi:10.1021/jp993593c

    Article  Google Scholar 

  • Wang Y, Herron N (1991) Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties. J Phys Chem 95(2):525–532. doi:10.1021/j100155a009

    Article  Google Scholar 

  • Wang S, Yang S (2000) Preparation and characterization of oriented PbS crystalline nanorods in polymer films. Langmuir 16(2):389–397. doi:10.1021/la990780t

    Article  Google Scholar 

  • Wang SF, Gu F, Lü MK, Zhou GJ, Zhang AY (2006) Sonochemical synthesis of PbS nanocubes, nanorods and nanotubes. J Cryst Growth 289(2):621–625. doi:10.1016/jcrysgro.2005.11.100

    Article  Google Scholar 

  • Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan HQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–359. doi:10.1002/adma.200390087

    Article  Google Scholar 

  • Xiang JH, Cao HQ, Wu QZ, Zhang SC, Zhang XR (2008) l-Cysteine-assisted self-assembly of complex PbS structures. Cryst Growth Des 8(11):3935–3940. doi:10.1021/cg7007842

    Article  Google Scholar 

  • Xiao ZL, Han CY, Kwok WK, Wang HH, Welp U, Wang J, Crabtree GW (2004) Tuning the architecture of mesostructures by electrodeposition. J Am Chem Soc 126(8):2316–2317. doi:10.1021/ja0315154

    Article  Google Scholar 

  • Xiong Y, Xie Y, Li Z, Li X, Cao S (2004) Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires. J Chem Eur 10(3):654–660. doi:10.1002/chem.200305569

    Article  Google Scholar 

  • Xiong SL, Xi BJ, Xu DC, Wang CM, Feng XM, Zhou HY, Qian YT (2007) l-Cysteine-assisted tunable synthesis of PbS of various morphologies. J Phys Chem C 111(5):16761–16767. doi:10.1021/jp075096z

    Article  Google Scholar 

  • Ye S, Ye Y, Ni Y, Wu ZJ (2005) The preparation and photoluminescence of situ self-assembly 1D PbS nanocrystals. J Cryst Growth 284(1–2):172–175. doi:10.1016/j.jcrysgro.2005.07.011

    Article  Google Scholar 

  • Yguerabide J, Yguerabide EE (1998) Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: 1. Theory. Anal Biochem 262(2):137–156. doi:10.1006/abio.1998.2759

    Article  Google Scholar 

  • Yu DS, Chen YJ, Li BJ, Chen XD (2009) Nanocubes of PbS with visible luminescence synthesized by sulfonated polymer as stabilizer and modifier at room-temperature. Mater Lett 63(27):2317–2320. doi:10.1016/j.matlet.2009.07.063

    Article  Google Scholar 

  • Zach MP, Ng KH, Penner RM (2000) Molybdenum nanowires by electrodeposition. Science 290(5499):2120–2123. doi:10.1126/science.290.5499.2120

    Article  Google Scholar 

  • Zhang L, Huang CZ, Li YF, Li Q (2009) Morphology control and structural characterization of Cu crystals: from twinned tabular crystals and single-crystalline nanoplates to multitwinned decahedra. Cryst Growth Des 9(7):3211–3217. doi:10.1021/cg801265y

    Article  Google Scholar 

  • Zhao NN, Qi LM (2006) Low-temperature synthesis of star-shaped PbS nanocrystals in aqueous solutions of mixed cationic/anionic surfactants. Adv Mater 18(3):359–362. doi:10.1002/adma.200501756

    Article  Google Scholar 

  • Zhao PT, Chen G, Hu Y, He XL, Wu K, Cheng Y, Huang KX (2007) Preparation of dentritic PbS nanostructures by ultrasonic method. J Cryst Growth 303(2):632–637. doi:10.1016/j.jcrysgro.2007.01.025

    Article  Google Scholar 

  • Zhao NN, Wei Y, Sun NJ, Chen Q, Bai JW, Zhou JP, Qin Y, Li MX, Qi LM (2008) Controlled synthesis of gold nanobelts and nanocombs in aqueous mixed surfactant solutions. Langmuir 24(3):991–998. doi:10.1021/la702848x

    Article  Google Scholar 

  • Zheng Y, Cheng Y, Wang Y, Bao F, Zhou L, Wei X, Zhang Y, Zheng Q (2006) Quasicubic α-Fe2O3 nanoparticles with excellent catalytic performance. J Phys Chem B 110(7):3093–3097. doi:10.1021/jp056617q

    Article  Google Scholar 

  • Zhou SM, Feng YS, Zhang LD (2003) Sonochemical synthesis of large-scale single-crystal PbS nanorods. J Mater Res 18(5):1188–1191. doi:10.1557/JMR.2003.0163

    Article  Google Scholar 

  • Zhou G, Xiu LZ, Wang S, Zhang H, Zhou Y, Wang S (2006) Controlled synthesis of high-quality PbS star-shaped dendrites, multipods, truncated nanocubes, and nanocubes and their shape evolution process. J Phys Chem B 110(13):6543–6548. doi:10.1021/jp0549881

    Article  Google Scholar 

  • Zuo F, Yan S, Zhang B, Zhao Y, Xie Y (2008) l-Cysteine-assisted synthesis of PbS nanocube-based pagoda-like hierarchical architectures. J Phys Chem C 112(8):2831–2835. doi:10.1021/jp0766149

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Chongqing Key Natural Science Foundation (cstc2012jjB50011) and the Fundamental Research Funds for the Central Universities (Project Nos. XDJK2011C064, XDJK2010C009). We thank Prof. Shuyuan Zhang (University of Science and Technology of China), Prof. Dingfei Zhang (Chongqing University) for their assistances with HREM and FESEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11051_2015_3169_MOESM1_ESM.doc

FESEM images of the samples obtained without CTAB, exceeded 8 h and at 25 °C. This material is available free of charge via the internet at http://www.springer.com. Supplementary material 1 (DOC 1697 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Li, Q., Wu, H. et al. Aqueous-solution synthesis of uniform PbS nanocubes and their optical properties. J Nanopart Res 17, 362 (2015). https://doi.org/10.1007/s11051-015-3169-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3169-0

Keywords

Navigation