Skip to main content
Log in

Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We investigated the size dependent magnetic properties and heating mechanism of spinel CoFe2O4 nanoparticles, which synthesized using the nonhydrolytic thermal decomposition method. The size of CoFe2O4 nanoparticles was arranged with the variation of solvent type, reflux time, and reflux temperature. The optimum size range was determined for magnetic fluid hyperthermia. The particles with 9.9 ± 0.3 nm average diameter have the highest heating ability in the AC magnetic field having 3.2 kA/m amplitude and 571 kHz frequency. The maximum specific absorption rate of 22 W/g was obtained for 9.9 ± 0.3 nm sized CoFe2O4 nanoparticles. The calculations and experimental results showed the dominancy of Brownian relaxation at the heat production of synthesized 9.9 ± 0.3 nm nanoparticles. In contrary, the magneto-heating in 5.4 ± 0.2 nm particles mainly originated from Neel relaxation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Coskun M, Can MM, Coskun OD, Korkmaz M, Firat T (2012) Surface anisotropy change of CoFe2O4 nanoparticles depending on thickness of coated SiO2 shell. J Nanopart Res 14:1197

    Article  Google Scholar 

  • Fortin J-P, Wilhelm C, Servais J, Ménager C, Bacri J-C, Gazeau F (2007) Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia. J Am Chem Soc 9(129):2628–2635

    Article  Google Scholar 

  • Häfeli U, Schütt W, Teller J, Zborowski M (1997) Scientific and clinical applications of magnetic carries. Plenum, New York

    Book  Google Scholar 

  • Hergt R, Dutz S (2007) Magnetic particle hyperthermia—biophysical limitations of a visionary tumour therapy. J Magn Magn Mater 311:187–192

    Article  Google Scholar 

  • Hergt R, Hiergeist R, Hilger I, Kaiser WA, Lapatnikov Y, Margel S, Richter U (2004) Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. J Magn Magn Mater 270:345–357

    Article  Google Scholar 

  • Hergt R, Dutz S, Muller R, Zeisberger M (2006) Magnetic particle hyperthermia: nanoparticle magnetism and materials development for cancer therapy. J Phys 18:S2919–S2934

    Google Scholar 

  • Johannsen M, Gneveckow U, Eckelt L, Feussner A, Waldöfner N, Scholz R, Deger S, Wust P, Loening SA, Jordan A (2005) Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperthermia 21:637–647

    Article  Google Scholar 

  • Lu A-H, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed Engl 46:1222–1244

    Article  Google Scholar 

  • Moroz P, Jones SK, Gray BN (2002) Magnetically mediated hyperthermia: current status and future directions. Int J Hyperthermia 18:267–284

    Article  Google Scholar 

  • Pradhan P, Giri J, Samanta G, Sarma HD, Mishra KP, Bellare J, Banerjee R, Bahadur D (2007) Comparative evaluation of heating ability and biocompatibility of different ferrite-based magnetic fluids for hyperthermia application. J Biomed Mater Res B 1(81):12–22

    Article  Google Scholar 

  • Rosenzweig RE (1985) Ferrohydrodynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Rosensweig RE (2002) Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater 252:370–374

    Article  Google Scholar 

  • Shukla N, Liu C, Roy AG (2006) Oriented self-assembly of cubic FePt nanoparticles. Mater Lett 8(60):995–998

    Article  Google Scholar 

  • Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, Li G (2004) Monodisperse MFe2O4 (M=Fe Co, Mn) nanoparticles. J Am Chem Soc 126:273–279

    Article  Google Scholar 

  • Wang X, Gu H, Yang Z (2005) The heating effect of magnetic fluids in an alternating magnetic field. J Magn Magn Mater 293:334–340

    Article  Google Scholar 

  • Xu C, Sun S (2007) Monodisperse magnetic nanoparticles for biomedical applications. Polym Int 56:821–826

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by The Scientific and Technological Research Council of Turkey (project number TBAG-109T746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Musa Mutlu Can.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Çelik, Ö., Can, M.M. & Firat, T. Size dependent heating ability of CoFe2O4 nanoparticles in AC magnetic field for magnetic nanofluid hyperthermia. J Nanopart Res 16, 2321 (2014). https://doi.org/10.1007/s11051-014-2321-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-014-2321-6

Keywords

Navigation