Skip to main content
Log in

Molecular dynamics simulation of β-sheet formation in self-assembled peptide amphiphile fibers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The influence of amino acid sequence on the secondary structure of peptide amphiphile (PAs) cylindrical micelles and fibers that are self-assembled in solution is studied using molecular dynamics simulations. Simulations for two choices of PAs were performed, starting with structures that have the correct overall shape, but which restructure considerably during the simulation, with one fiber being composed of valine rich PAs and the other of alanine rich PAs. Self-assembly is similar in both simulations, with stable fibers (diameter is 7.7–8 nm) obtained after 40 ns. We find that the valine rich PA fiber has a higher β-sheet population than the alanine rich fiber, and that the number of hydrogen bonds is higher. This behavior of the valine rich fiber is consistent with experimental measurements of higher stiffness, and it shows that stiffness can be varied while still maintaining self-assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen HC (1983) Rattle—a velocity version of the shake algorithm for molecular-dynamics calculations. J Comput Phys 52:24

    Article  CAS  Google Scholar 

  • Behanna HA, Donners J, Gordon AC, Stupp SI (2005) Coassembly of amphiphiles with opposite peptide polarities into nanofibers. J Am Chem Soc 127:1193

    Article  CAS  Google Scholar 

  • Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an n.Log(n) method for Ewald sums in large systems. J Chem Phys 98:10089

    Article  CAS  Google Scholar 

  • Feller SE, Zhang YH, Pastor RW, Brooks BR (1995) Constant-pressure molecular-dynamics simulation: the Langevin piston method. J Chem Phys 103:4613

    Article  CAS  Google Scholar 

  • Frishman D, Argos P (1995) Knowledge-based protein secondary structure assignment. Proteins 23:566

    Article  CAS  Google Scholar 

  • Grubmuller H (1996) Solvate. Theoretical Biophysics Group, Institute for Medical Optics, Ludwig-Maximilian University, Munich

    Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2001) Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294:1684

    Article  CAS  Google Scholar 

  • Hartgerink JD, Beniash E, Stupp SI (2002) Peptide-amphiphile nanofibers: a versatile scaffold for the preparation of self-assembling materials. Proc Natl Acad Sci USA 99:5133

    Article  CAS  Google Scholar 

  • Heinig M, Frishman D (2004) STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins. Nucleic Acids Res 32:W500

    Article  CAS  Google Scholar 

  • Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:33–38

    Article  CAS  Google Scholar 

  • IUPAC (1997) Compendium of chemical terminology, 2nd edn. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926

    Article  CAS  Google Scholar 

  • Kale L, Skeel R, Bhandarkar M, Brunner R, Gursoy A, Krawetz N, Phillips J, Shinozaki A, Varadarajan K, Schulten K (1999) NAMD2: greater scalability for parallel molecular dynamics. J Comput Phys 151:283

    Article  CAS  Google Scholar 

  • Kim CWA, Berg JM (1993) Thermodynamic beta-sheet propensities measured using a zinc-finger host peptide. Nature 362:267

    Article  CAS  Google Scholar 

  • Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920

    Article  CAS  Google Scholar 

  • Lee O-S, Stupp SI, Schatz GC (2011) Atomistic molecular dynamics simulations of peptide amphiphile self-assembly into cylindrical nanofibers. J Am Chem Soc 133:3677

    Article  CAS  Google Scholar 

  • Levitt M (1978) Conformational preferences of amino-acids in globular proteins. Biochemistry 17:4277

    Article  CAS  Google Scholar 

  • Mackerell AD, Wiorkewiczkuczera J, Karplus M (1995) An all-atom empirical energy function for the simulation of nucleic-acids. J Am Chem Soc 117:11946

    Article  CAS  Google Scholar 

  • Manning MC, Illangasekare M, Woody RW (1988) Circular-dichroism studies of distorted alpha-helices, twisted beta-sheets, and beta-turns. Biophys Chem 31:77–86

    Article  CAS  Google Scholar 

  • Martyna GJ, Tobias DJ, Klein ML (1994) Constant-pressure molecular-dynamics algorithms. J Chem Phys 101:4177

    Article  CAS  Google Scholar 

  • Meyers M, Chawla K (2009) Mechanical behavior of materials. Cambridge University Press, Cambridge

    Google Scholar 

  • Paramonov SE, Jun HW, Hartgerink JD (2006a) Self-assembly of peptide-amphiphile nanofibers: the roles of hydrogen bonding and amphiphilic packing. J Am Chem Soc 128:7291

    Article  CAS  Google Scholar 

  • Paramonov SE, Jun HW, Hartgerink JD (2006b) Modulation of peptide-amphiphile nanofibers via phospholipid inclusions. Biomacromolecules 7(1):24–26

    Article  CAS  Google Scholar 

  • Pashuck ET, Cui HG, Stupp SI (2010) Tuning supramolecular rigidity of peptide fibers through molecular structure. J Am Chem Soc 132:6041

    Article  CAS  Google Scholar 

  • Salemme FR (1983) Structural-properties of protein beta-sheets. Prog Biophys Mol Biol 42:95

    Article  CAS  Google Scholar 

  • Stupp SI, Donners J, Li LS, Mata A (2005) Expanding frontiers in biomaterials. MRS Bull 30:864

    Article  CAS  Google Scholar 

  • Tashiro K, Tadokoro H (1981) Calculation of 3-dimensional elastic-constants of polymer crystals. 3. Alpha-forms and gamma-forms of nylon-6. Macromolecules 14:781

    Article  CAS  Google Scholar 

  • Tashiro K, Kobayashi M, Tadokoro H (1978a) Calculation of 3-dimensional elastic-constants of polyer crystals. 1. Method of calculation. Macromolecules 11:908

    Article  CAS  Google Scholar 

  • Tashiro K, Kobayashi M, Tadokoro H (1978b) Calculation of 3-dimensional elastic-constants of polymer crystals. 2. Application to orthorhombic polyethylene and polyvynyl-alcohol. Macromolecules 11:914

    Article  CAS  Google Scholar 

  • Tysseling VM, Sahni V, Pashuck ET, Birch D, Hebert A, Czeisler C, Stupp SI, Kessler JA (2010) Self-assembling peptide amphiphile promotes plasticity of serotonergic fibers following spinal cord injury. J Neurosci Res 88:3161

    Article  CAS  Google Scholar 

  • Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, Stupp SI, Kessler JA (2008) Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 28:3814

    Article  CAS  Google Scholar 

  • Zhao Y, Yokoi H, Tanaka M, Kinoshita T, Tan TW (2008) Self-assembled pH-responsive hydrogels composed of the RATEA16 peptide. Biomacromolecules 9:1511

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the National Science Foundation (grant CHE-1147335), and by the DOE NERC EFRC (DE-SC0000989).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Schatz.

Additional information

This article is part of the topical collection on nanomaterials in energy, health and environment

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, OS., Liu, Y. & Schatz, G.C. Molecular dynamics simulation of β-sheet formation in self-assembled peptide amphiphile fibers. J Nanopart Res 14, 936 (2012). https://doi.org/10.1007/s11051-012-0936-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-012-0936-z

Keywords

Navigation