Skip to main content
Log in

Morphological, structural, and magnetic properties of Co nanoparticles in a silicon oxide matrix

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

We present a morphological, structural, and magnetic characterization of Co nanoparticles (mean diameter of 10.3 ± 1.8 nm) grown using a gas aggregation source and embedded in a silicon oxide matrix by sequential deposition of nanoparticles and silicon oxide. We show that the Co nanoparticles “soft-land” on the substrates and suffer a moderate oxidation in contact with the silicon oxide. Despite this moderate oxidation, it is found that, at room temperature, the magnetic volume of the resulting nanoparticles is below the superparamagnetic limit. The results presented in this article are compatible with the presence of an assembly of magnetically independent particles that also display a moderate exchange bias at low temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai J, Wang JP (2005) High-magnetic-moment core–shell-type FeCo–Au/Ag nanoparticles. Appl Phys Lett 87:152502

    Article  Google Scholar 

  • Bansmann J, Baker SH, Binns C, Blackman JA, Bucher JP, Dorantes-Dávila J, Dupuis V, Favre L, Kechrakos D, Kleibert A, Meiwes-Broer KH, Pastor GM, Perez A, Toulemonde O, Trohidou KN, Tuaillon J, Xie Y (2005) Magnetic and structural properties of isolated and assembled clusters. Surf Sci Rep 56:189

    Article  CAS  Google Scholar 

  • Bennewitz R, Crain JN, Kirakosian A, Lin JL, McChesney JL, Petrovykh DY, Himpsel FJ (2002) Atomic scale memory at a silicon surface. Nanotechnology 13:499

    Article  CAS  Google Scholar 

  • Binns C, Trohidou KN, Bansmann J, Baker SH, Blackman JA, Bucher JP, Kechrakos D, Kleibert A, Louch S, Meiwes-Broer KH, Pastor GM, Perez A, Xie Y (2005) The behaviour of nanostructured magnetic materials produced by depositing gas-phase nanoparticles. J Phys D 38:R357

    Article  CAS  Google Scholar 

  • Brune H (1998) Microscopic view of epitaxial metal growth: nucleation and aggregation. Surf Sci Rep 31:125

    Google Scholar 

  • Chen C, Kitakami O, Shimada Y (1998) Particle size effects and surface anisotropy in Fe-based granular films. J Appl Phys 84:2184

    Article  CAS  Google Scholar 

  • D’Addato S, Gragnaniello L, Valeri S, Rota A, di Bona A, Spizzo F, Panozaqi T, Schifano SF (2010) Morphology and magnetic properties of size-selected Ni nanoparticle films. J Appl Phys 107:104318

    Article  Google Scholar 

  • De Toro JA, Andrés JP, González JA, Muñiz P, Riveiro JM (2009) The oxidation of metal-capped Co cluster films under ambient conditions. Nanotechnology 20:085710

    Article  Google Scholar 

  • Denardin JC, Knobel M, Zhang XX, Pakhomov AB (2003) Giant hall effect in superparamagnetic granular films. J Magn Magn Mater 262:15

    Article  CAS  Google Scholar 

  • Fermento R, González-Díaz JB, Cebollada A, Armelles G, Díaz M, Martínez L, Román E, Huttel Y, Ballesteros C (2011) Optical and magneto-optical properties of Co–SiO x thin films. J Nanopart Res 13:2653

    Article  CAS  Google Scholar 

  • Gangopadhyay S, Hajipanayis GC (1993) Exchange anisotropy in oxide passivated Co fine particles. J Appl Phys 73:6964

    Article  CAS  Google Scholar 

  • Gao X, Cui Y, Levenson RM, Chung LWK, Nie S (2004) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22:969

    Article  CAS  Google Scholar 

  • Haberland H, Mall M, Moseler M, Qiang Y, Reiners T, Thurner Y (1994) Filling of micron-sized contact holes with copper by energetic cluster impact. J Vac Sci Technol A 12:2925

    Article  CAS  Google Scholar 

  • Horcas I, Fernández R, Gómez-Rodríguez JM, Colchero J, Gómez-Herrero J, Baró AM (2007) WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev Sci Instrum 78:013705

    Article  CAS  Google Scholar 

  • Huttel Y, Gómez H, Clavero C, Cebollada A, Armelles G, Navarro E, Ciria M, Benito L, Arnaudas JI, Kellock AJ (2004) Cobalt nanoparticles deposited and embedded in AlN: magnetic, magneto-optical, and morphological properties. J Appl Phys 96:1666

    Article  CAS  Google Scholar 

  • Huttel Y, Navarro E, Telling ND, van der Laan G, Pigazo F, Palomares FJ, Quintana C, Roman E, Armelles G, Cebollada A (2008) Interface alloying effects in the magnetic properties of Fe nanoislands capped with different materials. Phys Rev B 78:104403

    Article  Google Scholar 

  • Iles GN, Baker SH, Thornton SC, Binns C (2009) Enhanced capability in a gas aggregation source for magnetic nanoparticles. J Appl Phys 105:024306

    Article  Google Scholar 

  • ImageJ, http://rsbweb.nih.gov/ij

  • ITME, Institute of Electronic Materials Technology, http://www.itme.edu.pl/products.htm

  • JCPDS—International Center for diffraction Data (2001)

  • Kitakami O, Sato H, Shimada Y, Sato F, Tanaka M (1997) Size effect on the crystal phase of cobalt fine particles. Phys Rev B 56:13 849

    Article  CAS  Google Scholar 

  • Kodama RH (1999) Magnetic nanoparticles. J Magn Magn Mater 200:359

    Article  CAS  Google Scholar 

  • Maicas M, Sanz M, Cui H, Aroca C, Sánchez P (2010) Magnetic properties and morphology of Ni nanoparticles synthesized in gas phase. J Magn Magn Mater 322:3485

    Article  CAS  Google Scholar 

  • Mohanraj VJ, Chen Y (2006) Nanoparticles—a review. Trop J Pharm Res 5:561

    Google Scholar 

  • Moina CA, de Oliveira-Versic L, Vazdar M (2004) Magnetic domain states in nano-sized Co nuclei electrodeposited onto monocrystalline silicon. Mater Lett 58:3518

    Article  CAS  Google Scholar 

  • Morel R, Brenac A, Bayle-Guillemaud P, Portemont C, La Rizza F (2003) Growth and properties of cobalt clusters made by sputtering gas-aggregation. Eur Phys J D 24:287

    Article  CAS  Google Scholar 

  • Morel R, Brenac A, Portemont C (2004) Exchange bias and coercivity in oxygen-exposed cobalt clusters. J Appl Phys 95:3757

    Article  CAS  Google Scholar 

  • Morel R, Brenac A, Portemont C, Deutsch T, Notin L (2007) Magnetic anisotropy in icosahedral cobalt clusters. J Magn Magn Mater 308:296

    Article  CAS  Google Scholar 

  • Nanotec Electrónica S.L., http://www.nanotec.es

  • Navarro E, Huttel Y, Clavero C, Armelles G, Cebollada A (2004) Capping-layer-induced magnetic coupling in a two-dimensional nanostructured system. Appl Phys Lett 84:2139

    Article  CAS  Google Scholar 

  • O’Grady K, Bradbury A (1983) Particle size analysis in ferrofluids. J Magn Magn Mater 39:91

    Article  Google Scholar 

  • Oxford Applied Research, http://www.oaresearch.co.uk

  • Parent F, Tuaillon J, Stern LB, Dupuis V, Prevel B, Perez A, Melinon P, Guiraud G, Morel R, Barthélémy A, Fert A (1997) Giant magnetoresistance in Co–Ag granular films prepared by low-energy cluster beam deposition. Phys Rev B 55:3683

    Article  CAS  Google Scholar 

  • Perez A, Melinon P, Dupuis V, Bardotti L, Masenelli B, Tournus F, Prevel B, Tuaillon-Combes J, Bernstein E, Tamion A, Blanc N, Tainoff D, Boisron O, Guiraud G, Broyer M, Pellarin M, Del Fatti N, Vallee F, Cottancin E, Lerme J, Vialle JL, Bonnet C, Maioli P, Crut A, Clavier C, Rousset JL, Morfin F (2010) Functional nanostructures from cluster. Int J Nanotechnol 7:523

    Article  CAS  Google Scholar 

  • Puntes VF, Krishnan KM, Alivisatos AP (2001) Colloidal nanocrystal shape and size control: the case of cobalt. Science 291:2115

    Article  CAS  Google Scholar 

  • Qiang Y, Sabiryanov RF, Jaswal SS, Liu Y, Haberland H, Sellmyer DJ (2002) Magnetism of Co nanocluster films. Phys Rev B 66:064404

    Article  Google Scholar 

  • Rivera M, Rios-Reyes CH, Mendoza-Huizar LH (2011) Magnetic transition phase diagram of cobalt clusters electrodeposited on HOPG: experimental and micromagnetic modelling study. J Magn Magn Mater 323:997

    Article  CAS  Google Scholar 

  • Shiratsuchi Y, Yamamoto M, Endo Y, Li D, Bader SD (2003) Superparamagnetic behavior of ultrathin Fe films grown on Al2O3(0001) substrates. J Appl Phys 94:7675

    Article  CAS  Google Scholar 

  • Skumryev V, Stoyanov S, Zhang Y, Hadjipanayis G, Givord D, Nogues J (2003) Beating the superparamagnetic limit with exchange bias. Nature 423:850

    Article  CAS  Google Scholar 

  • Srinivasa S, Haenggi M (2010) Distance distribution in finite uniformly random networks: theory and applications. IEEE Trans 59:940

    Google Scholar 

  • Stoner EC, Wohlfarth EP (1948) A mechanism of magnetic hysteresis in heterogeneous alloys. Phil Trans Roy Soc A 240:599

    Article  Google Scholar 

  • Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287:1989

    Article  CAS  Google Scholar 

  • Takeshita H, Suzuki Y, Akinaga H, Mizutani W, Ando K, Katayama T, Itoh A, Tanaka K (1997) Magnetization process of a nanometer-scale cobalt dots array formed on a reconstructed Au(111) surface. J Magn Magn Mater 165:38

    Article  CAS  Google Scholar 

  • Taleb A, Petit C, Pileni MP (1997) Synthesis of highly monodisperse silver nanoparticles from AOT reverse micelles: a way to 2D and 3D self-organization. Chem Mater 9:950

    Article  CAS  Google Scholar 

  • Tamion A, Hillenkamp M, Tournus F, Bonet E, Dupuis V (2009) Accurate determination of the magnetic anisotropy in cluster-assembled nanostructures. Appl Phys Lett 95:062503

    Article  Google Scholar 

  • Tamion A, Raufast C, Hillenkamp M, Bonet E, Jouanguy J, Canut B, Bernstein E, Boisron O, Wernsdorfer W, Dupuis V (2010) Magnetic anisotropy of embedded Co nanoparticles: influence of the surrounding matrix. Phys Rev B 81:144403

    Article  Google Scholar 

  • Tannous C, Gieraltowski J (2008) The Stoner–Wohlfarth model of ferromagnetism. Eur J Phys 29:475

    Article  CAS  Google Scholar 

  • Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281:1647

    Article  CAS  Google Scholar 

  • Wegner K, Piseri P, Vahedi Tafreshi H, Milani P (2006) Cluster beam deposition: a tool for nanoscale science and technology. J Phys D 39:R439

    Article  CAS  Google Scholar 

  • Xiao G, Chien CL (1987) Temperature dependence of spontaneous magnetization of ultrafine Fe particles in Fe–SiO2 granular solids. J Appl Phys 61:3308

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Spanish Ministerio de Ciencia e Innovación under projects MAT2005-05524-C02-02, MAT-2007-66181, MAT2008-06765-C02, MAT2008-06517-C02-01, CSD2007-00041 (NANOSELECT), CSD2008-00023 (FUNCOAT), CSD2009-00013, and the European Commission NMP3-SL-2008-214107. Consejo Superior de Investigaciones Científicas and the Spanish Ministerio de Ciencia e Innovación are thanked for financial support. Jordi Llobet from the Instituto de Microelectrónica de Barcelona IMB-CNM-CSIC and Xavier Borrisé from the Centro de Investigación en Nanociencia y Nanotecnología, Bellaterra, Barcelona, CIN2-CSIC are thanked for the preparation of the cross-sectional samples. TEM study has been carried out at the LABMET, Red de Laboratorios de la Comunidad de Madrid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Huttel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Díaz, M., Martínez, L., Ruano, M.M. et al. Morphological, structural, and magnetic properties of Co nanoparticles in a silicon oxide matrix. J Nanopart Res 13, 5321 (2011). https://doi.org/10.1007/s11051-011-0518-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-011-0518-5

Keywords

Navigation