Skip to main content
Log in

Experimental and theoretical study on the β-FeOOH nanorods: growth and conversion

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

This study presents an experimental and theoretical study on the growth of monodispersed akaganéite (β-FeOOH) nanorods with tunable aspect ratios (longitudinal to transversal) under mild conditions (80 °C, aqueous solution). The synthesis of β-FeOOH nanorods is highly influenced by the presence of salt ions, and thus, the effect of various anions (e.g., NO3 , SO4 2−, F, Cl, and Br) were investigated on the microstructure, morphology, and size of the nanoparticles. It was found that these anions could interact strongly or weakly with the FeO6 octahedral unit in the ferric oxyhydroxides, hence greatly affect the morphology, crystallization, and structure of the iron oxide/oxyhydroxide nanoparticles under the reported conditions. Moreover, these nanorods could be converted into magnetite (Fe3O4) through the reduction of hydrazine, which provides a new template approach to prepare magnetite nanorods with shape and size control at ambient conditions. The microstructure, composition, and structural transformation of the as-synthesized nanoparticles were characterized by various techniques, such as transmission electron microscopy (TEM and HRTEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS). The possible formation and growth mechanism of akaganéite nanorods were discussed. Finally, the influence of anions on the β-FeOOH(100), (110), and (001) surfaces was further understood by theoretical simulations (e.g., molecular dynamics method).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Bomati-Miguel O, Rebolledo AF, Tartaj P (2008) Controlled formation of porous magnetic nanorods via a liquid/liquid solvothermal method. Chem Commun (35):4168–4170

  • Bottero JY, Manceau A, Villieras F, Tchoubar D (1994) Structure and mechanisms of formation of iron oxide hydroxide (chloride) polymers. Langmuir 10(1):316–319. doi:10.1021/la00013a046

    Article  CAS  Google Scholar 

  • Cai J, Liu J, Gao Z, Navrotsky A, Suib SL (2001) Synthesis and anion exchange of tunnel structure akaganeite. Chem Mater 13(12):4595–4602. doi:10.1021/cm010310w

    Article  CAS  Google Scholar 

  • Chambaere D, Govaert A, de Sitter J, de Grave E (1978) A Mössbauer investigation of the quadrupole splitting in [beta]-FeOOH. Solid State Commun 26(10):657–659

    Article  CAS  Google Scholar 

  • Chen M, Jiang J, Zhou X, Diao G (2008) Preparation of akaganeite nanorods and their transformation to sphere shape hematite. J Nanosci Nanotechnol 8:3942–3948

    Article  CAS  Google Scholar 

  • Chitrakar R, Tezuka S, Sonoda A, Sakane K, Ooi K, Hirotsu T (2006) Phosphate adsorption on synthetic goethite and akaganeite. J Colloid Interf Sci 298(2):602–608

    Article  CAS  Google Scholar 

  • Davidson LE, Shaw S, Benning LG (2008) The kinetics and mechanisms of schwertmannite transformation to goethite and hematite under alkaline conditions. Am Mineral 93(8–9):1326–1337. doi:10.2138/am.2008.2761

    Article  CAS  Google Scholar 

  • Demourgues A, Francke L, Durand E, Tressaud A (2002) Chemistry and key structural features of oxyhydroxy-fluorides: relationships with the acidic character, thermal stability and surface area. J Fluorine Chem 114(2):229–236

    Article  CAS  Google Scholar 

  • Fang X-L, Li Y, Chen C, Kuang Q, Gao X-Z, Xie Z-X, Xie S-Y, Huang R-B, Zheng L-S (2009) pH-induced simultaneous synthesis and self-assembly of 3D layered β-FeOOH nanorods. Langmuir 26(4):2745–2750. doi:10.1021/la902765p

    Article  Google Scholar 

  • Filankembo A, Pileni MP (2000) Is the template of self-colloidal assemblies the only factor that controls nanocrystal shapes? J Phys Chem B 104(25):5865–5868. doi:10.1021/jp000268c

    Article  CAS  Google Scholar 

  • García KE, Barrero CA, Morales AL, Greneche JM (2008) Characterization of akaganeite synthesized in presence of Al3+, Cr3+, and Cu2+ ions and urea. Mater Chem Phys 112(1):120–126

    Article  Google Scholar 

  • Gou X, Wang G, Kong X, Wexler D, Horvat J, Yang J, Park J (2008) Flutelike porous hematite nanorods and branched nanostructures: synthesis, characterisation and application for gas-sensing. Chem A Eur J 14(19):5996–6002

    Article  CAS  Google Scholar 

  • Hu Y, Chen K (2007) Crystal splitting in the growth of [beta]-FeO(OH). J Cryst Growth 308(1):185–188

    Article  CAS  Google Scholar 

  • Ishikawa T, Miyamoto S, Kandori K, Nakayama T (2005) Influence of anions on the formation of [beta]-FeOOH rusts. Corros Sci 47(10):2510–2520

    Article  CAS  Google Scholar 

  • Jiang X, Yu A, Yang W, Ding Y, Xu C, Lam S (2010) Synthesis and growth of hematite nanodiscs through a facile hydrothermal approach. J Nanopart Res 12(3):877–893

    Article  CAS  Google Scholar 

  • Kamimura T, Nasu S, Segi T, Tazaki T, Miyuki H, Morimoto S, Kudo T (2005) Influence of cations and anions on the formation of [beta]-FeOOH. Corros Sci 47(10):2531–2542

    Article  CAS  Google Scholar 

  • Kemal L, Jiang XC, Wong K, Yu AB (2008) Experiment and theoretical study of poly(vinyl pyrrolidone)-controlled gold nanoparticles. J Phys Chem C 112(40):15656–15664. doi:10.1021/jp803935y

    Article  CAS  Google Scholar 

  • Kwon S-K, Suzuki S, Saito M, Waseda Y (2005) Influence of foreign ions on the atomic scale structure of ferric oxyhydroxides. Corros Sci 47(10):2543–2549

    Article  CAS  Google Scholar 

  • Kwon SK, Suzuki S, Saito M, Kamimura T, Miyuki H, Waseda Y (2006) Atomic-scale structure of [beta]-FeOOH containing chromium by anomalous X-ray scattering coupled with reverse Monte Carlo simulation. Corros Sci 48(6):1571–1584

    Article  CAS  Google Scholar 

  • Maeda H, Maeda Y (2002) An atomic force microscopy study of surface structures of colloidal β-FeOOH particles forming smectic layers. Nano Lett 2(10):1073–1077. doi:10.1021/nl020211x

    Article  CAS  Google Scholar 

  • Music S, Vértes A, Simmons GW, Czakó-Nagy I, Leidheiser H (1982) Mössbauer spectroscopic study of the formation of Fe(III) oxyhydroxides and oxides by hydrolysis of aqueous Fe(III) salt solutions. J Colloid Interf Sci 85(1):256–266

    Article  CAS  Google Scholar 

  • Music S, Krehula S, Popovic S (2004) Effect of HCl additions on forced hydrolysis of FeCl3 solutions. Mater Lett 58(21):2640–2645

    Article  CAS  Google Scholar 

  • Peng Z, Wu M, Xiong Y, Wang J, Chen Q (2005) Synthesis of magnetite nanorods through reduction of beta-FeOOH. Chem Lett 34(5):636–637

    Article  CAS  Google Scholar 

  • Qinghua Z et al (2007) Growth mechanisms of silver nanoparticles: a molecular dynamics study. Nanotechnology 18(3):035708

    Article  Google Scholar 

  • Rémazeilles C, Refait P (2007) On the formation of [beta]-FeOOH (akaganéite) in chloride-containing environments. Corros Sci 49(2):844–857

    Article  Google Scholar 

  • Richmond WR, Cowley JM, Parkinson GM, Saunders M (2006) An electron microscopy study of [small beta]-FeOOH (akaganeite) nanorods and nanotubes. CrystEngComm 8(1):36–40

    CAS  Google Scholar 

  • Rose J, Manceau A, Masion A, Bottero J-Y (1997) Structure and mechanisms of formation of FeOOH(NO3) Oligomers in the Early Stages of Hydrolysis. Langmuir 13(12):3240–3246. doi:10.1021/la962079k

    Article  CAS  Google Scholar 

  • Shao H-F, Qian X-F, Yin J, Zhu Z-K (2005) Controlled morphology synthesis of [beta]-FeOOH and the phase transition to Fe2O3. J Solid State Chem 178(10):3130–3136

    Article  CAS  Google Scholar 

  • Tobias DJ, Hemminger JC (2008) CHEMISTRY: getting specific about specific ion effects. Science 319(5867):1197–1198. doi:10.1126/science.1152799

    Article  CAS  Google Scholar 

  • Vayssieres L, Rabenberg L, Manthiram A (2002) Aqueous chemical route to ferromagnetic 3-D arrays of iron nanorods. Nano Lett 2(12):1393–1395. doi:10.1021/nl025840l

    Article  CAS  Google Scholar 

  • Wu C, Yin P, Zhu X, OuYang C, Xie Y (2006) Synthesis of hematite (α-Fe2O3) nanorods: diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J Phys Chem B 110(36):17806–17812. doi:10.1021/jp0633906

    Article  CAS  Google Scholar 

  • Wu P-C, Wang W-S, Huang Y-T, Sheu H-S, Lo Y-W, Tsai T-L, Shieh D-B, Yeh C-S (2007) Porous iron oxide based nanorods developed as delivery nanocapsules. Chem A Eur J 13(14):3878–3885

    Article  CAS  Google Scholar 

  • Xiong Y, Li Z, Li X, Hu B, Xie Y (2004) Thermally stable hematite hollow nanowires. Inorg Chem 43(21):6540–6542. doi:10.1021/ic049018r

    Article  CAS  Google Scholar 

  • Yue J, Jiang X, Yu A (2010a) Theoretical study of growth mechanism of goethite in the presence of surfactants. Mater Sci Forum 654–656:1658–1661

    Article  Google Scholar 

  • Yue J, Jiang X, Zeng Q, Yu A (2010b) Experimental and numerical study of cetyltrimethylammonium bromide (CTAB)-directed synthesis of goethite nanorods. Solid State Sci 12(7):1152–1159

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Australia Research Council (ARC) DP projects and ARC-Excellence Centre of Functional Nanomaterials (ARC-CFN) for the financial support of this study. The authors acknowledge the permission granted to access to the University of New South Wales (UNSW) node of the Australian Microscopy & Microanalysis Research Facility (AMMRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuchuan Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yue, J., Jiang, X. & Yu, A. Experimental and theoretical study on the β-FeOOH nanorods: growth and conversion. J Nanopart Res 13, 3961–3974 (2011). https://doi.org/10.1007/s11051-011-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-011-0320-4

Keywords

Navigation