Skip to main content
Log in

Deep metastable eutectic nanometer-scale particles in the MgO–Al2O3–SiO2 system

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Laboratory vapor phase condensation experiments systematically yield amorphous, homogeneous, nanoparticles with unique deep metastable eutectic compositions. They formed during the nucleation stage in rapidly cooling vapor systems. These nanoparticles evidence the complexity of the nucleation stage. Similar complex behavior may occur during the nucleation stage in quenched-melt laboratory experiments. Because of the bulk size of the quenched system many of such deep metastable eutectic nanodomains will anneal and adjust to local equilibrium but some will persist metastably depending on the time–temperature regime and melt/glass transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aasland S, Mcmillan PF (1994) Density-driven liquid–liquid phase separation in the system Al2O3–Y2O3. Nature 369:633–636

    Article  CAS  Google Scholar 

  • Abraham K, Gebert W, Medenbach O et al (1983) Eifelite, KNa3Mg4Si12O30, a new mineral of the osumilite group with octahedral sodium. Contrib Miner Pet 82:252–258

    Article  CAS  Google Scholar 

  • Cliff G, Lorimer GW (1975) The quantitative analysis of thin specimens. J Microsc 103:203–207

    Google Scholar 

  • De BR (1979) Disequilibrium condensation environments in space: a frontier in thermodynamics. Astrophys Space Sci 65:191–198

    Article  CAS  Google Scholar 

  • Ding Y, Veblen DR (2004) Impactite from Henbury, Australia. Am Miner 89:961–968

    CAS  Google Scholar 

  • Hadamcik E, Renard J-B, Rietmeijer FJM et al (2007) Light scattering by fluffy Mg–Fe–SiO and C mixtures as cometary analogs (PROGRA2 experiment). Icarus 190:660–671

    Article  CAS  Google Scholar 

  • Harlov DE, Milke R, Gottschalk M (2008) Metastability of sillimanite relative to corundum and quartz in the kyanite stability field: competition between stable and metastable reactions. Am Miner 93:608–617

    Article  CAS  Google Scholar 

  • Highmore RJ, Greer AL (1989) Eutectics and the formation of amorphous alloys. Nature 339:363–365

    Article  CAS  Google Scholar 

  • MacKenzie KJD, Meinhold RH (1994) Thermal reactions of chrysotile revisited: a 29Si and 25Mg MAS NMR study. Am Miner 79:43–50

    CAS  Google Scholar 

  • Martinez I, Schärer U, Guyot F (1993) Impact-induced phase transformations at 50–60 GPa in continental crust: an EPMA and ATEM study. Earth Planet Sci Lett 119:207–223

    Article  CAS  Google Scholar 

  • Nelson RN, Thiemens MH, Nuth J et al (1989) Oxygen isotopic fractionation in the condensation of refractory smokes. In: Ryder G, Sharpton V (eds) Proc 19th Lunar Planet Sci Conf: 559–563. Cambridge University Press, New York

    Google Scholar 

  • Nuth JA (1996) Grain formation and metamorphism. In: Greenberg JM (ed) The cosmic dust connection. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 205–221

    Google Scholar 

  • Nuth JA, Ferguson F (1993) Nucleation of solids from the gas phase. Ceram Trans 30:23–34

    CAS  Google Scholar 

  • Nuth JA III, Hallenbeck SL, Rietmeijer FJM (2000) Laboratory studies of silicate smokes: analog studies of circumstellar materials. J Geophys Res 105(5):10387–10396

    Article  CAS  Google Scholar 

  • Nuth JA, Rietmeijer FJM, Hill HGM (2002) Condensation processes in astrophysical environments: the composition and structure of cometary grains. Meteorit Planet Sci 37:1579–1590

    Article  CAS  Google Scholar 

  • Ostwald W (1896) Lehrbuch Allgemeine Chemie, vol 2. Engelmann, Leipzig, p 2

    Google Scholar 

  • Prigogine I (1978) Time, structure, and fluctuations. Science 201:777–785

    Article  CAS  Google Scholar 

  • Prigogine I (1979) Irreversibility and randomness. Astrophys Space Sci 65:371–381

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Karner JM (1999) Metastable eutectics in the Al2O3–SiO2 system explored by vapor phase condensation. J Chem Phys 110:4554–4558

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Nuth JA III (2009) A metastable aluminosilica compound for aluminum and water transport to the upper mantle. Intl J Geophys 909431:4. doi:10.1155/2009/909431

    Google Scholar 

  • Rietmeijer FJM, Nuth JA III, Karner JM (1999) Metastable eutectic gas to solid condensation in the FeO–Fe2O3 SiO2 system. Phys Chem Chem Phys 1:1511–1516

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Nuth III JA, Karner JM et al (2002a) Gas to solid condensation in a Mg–SiO–H2–O2 vapor: Metastable eutectics in the MgO–SiO2 phase diagram. Phys Chem Chem Phys 4:546–551

    Google Scholar 

  • Rietmeijer FJM, Hallenbeck SL, Nuth JA III et al (2002b) Amorphous magnesiosilicate smokes annealed in vacuum: the evolution of magnesium silicates in circumstellar and cometary dust. Icarus 56:69–286

    Google Scholar 

  • Rietmeijer FJM, Nuth JA III, Nelson RN (2004) Laboratory hydration of condensed magnesiosilica smokes with implications for hydrated silicates in IDPs and comets. Meteorit Planet Sci 39:723–746

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Nuth JA III, Rochette P et al (2006) Deep metastable eutectic condensation in Al–Fe–SiO–O2–H2 vapors: implications for natural Fe-aluminosilicates. Am Miner 91:1688–1698

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Pun A, Kimura Y et al (2008a) A refractory Ca–SiO–H2–O2 vapor condensation experiment with implications for calciosilica dust transforming to silicate and carbonate minerals. Icarus 195:493–503

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Pun A, Nuth JA III (2008b) A deep metastable eutectic iron–aluminate. Chem Phys Lett 458:355–358

    Article  CAS  Google Scholar 

  • Rietmeijer FJM, Hadamcik E, Pun A et al (2009a) Light scattering by fluffy low-silica Al–Fe–SiO and Ca–SiO smokes obtained by non-equilibrium vapor phase condensation. LPS, vol 40. Lunar and Planetary Institute, Houston, p 1742

  • Rietmeijer FJM, Pun A, Nuth JA III (2009b) Dust formation and evolution in a Ca–Fe–SiO–H2–O2 vapor phase condensation experiments & astronomical implications. Month Not R Astron Soc 396:402–408

    Article  CAS  Google Scholar 

  • Schreyer W, Schairer JF (1961a) Compositions and structural states of anhydrous Mg-cordierite: a re-investigation of the central part of the system MgO–Al2O3 SiO2. J Petrol 2:324–406

    CAS  Google Scholar 

  • Schreyer W, Schairer JF (1961b) Metastable solid solution with quartz-type-structures on the join SiO2–MgAl2O4. Z Kristallogr 116:60–81

    Article  CAS  Google Scholar 

  • Schreyer W, Schairer JF (1962) Metastable osumilite and petalite-type phases in the system MgO–Al2O3 SiO2. Am Miner 47:90–104

    CAS  Google Scholar 

  • Volten H, Muňoz O, Hovenier JW et al (2007) Experimental light scattering by fluffy aggregates of magnesiosilica, ferrosilica, and alumina cosmic dust analogs. Astron Astrophys 470:377–386

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grant NNX10AK28G from the NASA Cosmochemistry Program (FJMR). JAN is grateful for the support received from the Cosmochemistry Program at NASA Headquarters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frans J. M. Rietmeijer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rietmeijer, F.J.M., Nuth, J.A. Deep metastable eutectic nanometer-scale particles in the MgO–Al2O3–SiO2 system. J Nanopart Res 13, 3149–3156 (2011). https://doi.org/10.1007/s11051-010-0210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11051-010-0210-1

Keywords

Navigation