Skip to main content
Log in

Noncommutative rational functions, their difference-differential calculus and realizations

  • Published:
Multidimensional Systems and Signal Processing Aims and scope Submit manuscript

Abstract

Noncommutative rational functions appeared in many contexts in system theory and control, from the theory of finite automata and formal languages to robust control and LMIs. We survey the construction of noncommutative rational functions, their realization theory and some of their applications. We also develop a difference-differential calculus as a tool for further analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alpay D., Kalyuzhnyĭ-Verbovetzkiĭ D.S. (2004) On the intersection of null spaces for matrix substitutions in a non-commutative rational formal power series. C. R. Math. Acad. Sci. Paris 339(8): 533–538

    MATH  MathSciNet  Google Scholar 

  • Alpay, D., & Kalyuzhnyĭ-Verbovetzkiĭ, D.S. (2006). Matrix-J-unitary non-commutative rational formal power series. In The state space method generalizations and applications, volume 161 of Operational Theory in Advance Applications, pp. 49–113. Birkhäuser, Basel.

  • Amitsur S.A. (1966) Rational identities and applications to algebra and geometry. Journal of Algebra 3: 304–359

    Article  MATH  MathSciNet  Google Scholar 

  • Ball J.A., Groenewald G., Malakorn T. (2005) Structured noncommutative multidimensional linear systems. SIAM Journal in Control Optimisation 44(4): 1474–1528 (electronic)

    Article  MATH  MathSciNet  Google Scholar 

  • Ball, J. A., Groenewald, G., & Malakorn, T. (2006a). Conservative structured noncommutative multidimensional linear systems. In The state space method: generalizations and applications, volume 161 of Operator Theory: Advances and Applications, pp. 179–223. Birkhäuser, Basel.

  • Ball J.A., Groenewald G., Malakorn T. (2006b) Bounded real lemma for structured noncommutative multidimensional linear systems and robust control. Multidimensional Systems and Signal Processing 17(2-3): 119–150

    Article  MATH  MathSciNet  Google Scholar 

  • Ball J.A., Kaliuzhnyi-Verbovetskyi D.S. (2008) Conservative dilations of dissipative multidimensional systems: The commutative and non-commutative settings. Multidimensional Systems and Signal Processing 19: 79–122

    Article  MATH  MathSciNet  Google Scholar 

  • Ball, J. A., & Vinnikov V. (2005). Lax-Phillips scattering and conservative linear systems: a Cuntz-algebra multidimensional setting, Memoirs of American Mathematical Society 178(837).

  • Beck C. (2001) On formal power series representations for uncertain systems. IEEE Transactions on Automatic Control 46(2): 314–319

    Article  MATH  Google Scholar 

  • Beck C. L., Doyle J., Glover K. (1996) Model reduction of multidimensional and uncertain systems. IEEE transactions on automatic control 41(10): 1466–1477

    Article  MATH  MathSciNet  Google Scholar 

  • Bergman, G. M. (1970) Skew fields of noncommutative rational functions, after Amitsur. In Séminaire Schützenberger–Lentin–Nivat, Année 1969/1970, No. 16. Paris.

  • Berstel J., Reutenauer C. (1988) Rational series and their languages, volume 12 of EATCS Monographs on Theoretical Computer Science. Springer, Berlin

    Google Scholar 

  • Bratelli, O., & Jorgensen, P. E. T. (1999). Iterated function systems and permutation representations of the Cuntz algebra, Memoirs of American Mathematical Society no. 139

  • Camino J. F., Helton J. W., Skelton R. E., Ye J. (2003) Matrix inequalities: A symbolic procedure to determine convexity automatically. Integral Equations and Operator Theory 46(4): 399–454

    Article  MATH  MathSciNet  Google Scholar 

  • Cohn P. M. (1971a) The embedding of firs in skew fields. Proceedings of London Mathematical Society 23: 193–213

    Article  MATH  Google Scholar 

  • Cohn P. M. (1971b) Free rings and their relations. Academic Press, London London Mathematical Society Monographs, No. 2

    MATH  Google Scholar 

  • Cohn P. M. (1972) Universal skew fields of fractions. Symposia in Mathematics 8: 135–148

    Google Scholar 

  • Cohn P. M. (1997) The universal skew field of fractions of a tensor product of free rings. Colloq. Math 72(1): 1–8

    MATH  MathSciNet  Google Scholar 

  • Cohn P. M. (1998) Correction to: The universal skew field of fractions of a tensor product of free rings. Colloq. Math 76(2): 319

    MathSciNet  Google Scholar 

  • Cohn P. M. (2006) Free ideal rings and localization in general rings. Cambridge University Press, Cambridge New Mathematical Monographs 3

    Book  MATH  Google Scholar 

  • Davidson K. R., Pitts D. R. (1999) Invariant subspaces and hyper-reflexivity for the free semigroup algebras. Proceedings of London Mathematical Society 78: 401–430

    Article  MathSciNet  Google Scholar 

  • Fisher J. L. (1971) Embedding free algebras in skew fields. Proceedings of American Mathematical Society 30: 453–458

    Article  Google Scholar 

  • Fliess M. (1970) Sur le plongement de l’algèbre des séries rationnelles non commutatives dans un corps gauche. C. R. Academy of Science Paris, Series A 271: 926–927

    MATH  MathSciNet  Google Scholar 

  • Fliess M. (1974a) Matrices de Hankel. Journal in Mathematical Pures Applications 53(9): 197–222

    MATH  MathSciNet  Google Scholar 

  • Fliess M. (1974b) Sur divers produits de séries formelles. Bulletin Soc. Mathematics France 102: 181–191

    MATH  MathSciNet  Google Scholar 

  • Formanek, E. (1991). The polynomial identities and invariants of n × n matrices. CBMS Regional Conference Series in Mathematics, 78. The American Mathematical Society, Providence, RI.

  • Fornasini E., Marchesini G. (1978/1979) Doubly-indexed dynamical systems: state-space models and structural properties. Mathematical Systems Theory 12(1): 59–72

    Article  MathSciNet  Google Scholar 

  • Givone D. D., Roesser R. P. (1972) Multidimensional linear iterative circuits–general properties. IEEE Transactions on Computers 21: 1067–1073

    Article  MATH  MathSciNet  Google Scholar 

  • Helton, J. W. (2003). Manipulating matrix inequalities automatically. In Mathematical systems theory in biology, communications, computation, and finance (Notre Dame, IN, 2002), volume 134 of IMA Vol. Math. Appl., pp. 237–256. New York:Springer.

  • Helton J.W., McCullough S.A., Putinar M., Vinnikov V. (2009) Convex matrix inequalities versus linear matrix inequalities. IEEE Transactions Automatic Control 54(5): 952–964

    Article  MathSciNet  Google Scholar 

  • Helton J.W., McCullough S.A., Vinnikov V. (2006) Noncommutative convexity arises from linear matrix inequalities. Journal of Functional Analysis 240(1): 105–191

    Article  MATH  MathSciNet  Google Scholar 

  • Horn R.A., Johnson C.R. (1994) Topics in matrix analysis. Corrected reprint of the 1991 original. Cambridge University Press, Cambridge

    Google Scholar 

  • Jategaonkar A.V. (1969) Ore domains and free algebras. Bulletin of London Mathematical Society 1: 45–46

    Article  MATH  MathSciNet  Google Scholar 

  • Kaliuzhnyi-Verbovetskyi D.S., Vinnikov V. (2009) Singularities of noncommutative rational functions and minimal factorizations. Linear Alg. Applications 430: 869–889

    Article  MATH  MathSciNet  Google Scholar 

  • Kaliuzhnyi-Verbovetskyi, D. S., & Vinnikov, V. (2010). Foundations of noncommutative function theory (in preparation).

  • Kleene, S. C. (1956). Representation of events in nerve nets and finite automata. In Automata studies, Annals of mathematics studies, no. 34, pp. 3–41. Princeton University Press, Princeton, NJ.

  • Kovacs I., Silver D. S., Williams S. G. (1999) Determinants of commuting-block matrices. American Mathematical Monthly 106(10): 950–952

    Article  MATH  MathSciNet  Google Scholar 

  • Lambek, J. (1966) Lectures on rings and modules. With an appendix by Ian G. Connell. Waltham: Blaisdell Publishing Co. Ginn and Co.

  • Lang S. (1984) Algebra (2nd ed.). Addison-Wesley, London

    MATH  Google Scholar 

  • Lu W.-M., Zhou K., Doyle J. C. (1996) Stabilization of uncertain linear systems: An LFT approach. IEEE Transactions in Automatic Control 41(1): 50–65

    Article  MATH  MathSciNet  Google Scholar 

  • Nemirovskii A. (2006) Advances in convex optimization: Conic programming Plenary. Lecture, International Congress of Mathematicians (ICM). Madrid, Spain

    Google Scholar 

  • Nesterov Yu., Nemirovskii A. (1994) Interior-point polynomial algorithms in convex programming, volume 13 of SIAM Studies in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA

    Book  Google Scholar 

  • Popescu G. (1989a) Models for infinite sequences of noncommuting operators. Acta Science Mathematics 53: 355–368

    MATH  Google Scholar 

  • Popescu G. (1989b) Characteristic functions for infinite sequences of noncommuting operators. Journal of Operator Theory 22: 51–71

    MATH  MathSciNet  Google Scholar 

  • Popescu G. (1989c) Isometric dilations for infinite sequences of noncommuting operators. Transactions of American Mathematical Society 316: 523–536

    Article  MATH  Google Scholar 

  • Popescu G. (1995) Multi-analytic operators on Fock spaces. Mathematische Annalen 303: 31–46

    Article  MATH  MathSciNet  Google Scholar 

  • Rowen L. H. (1980) Polynomial identities in ring theory, volume 84 of Pure and Applied Mathematics. Academic Press. [Inc Harcourt Brace Jovanovich Publishers], New York

    Google Scholar 

  • Schützenberger M. P. (1961) On the definition of a family of automata. Information and Control 4: 245–270

    Article  MATH  MathSciNet  Google Scholar 

  • Schützenberger, M. P. (1963). Certain elementary families of automata. In Proc. Sympos. Math. Theory of Automata (New York, 1962), pp. 139–153. Polytechnic Press of Polytechnic Institute of Brooklyn, Brooklyn, NY.

  • Skelton R. E., Iwasaki T., Grigoriadis K. M. (1997) A unified algebraic approach to linear control design. Taylor & Francis, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry S. Kaliuzhnyi-Verbovetskyi.

Additional information

Part of the research described in this paper was carried during the first author’s visit to Ben-Gurion University in December 2009 that was partially supported by the Center for Advanced Studies in Mathematics. The revised version was prepared during the stay of the authors in May 2010 at the Mathematisches Forschungs-institut Oberwolfach under the program Research in Pairs. The first author was also supported by the NSF grant DMS 0901628. The research of the second author was partially supported by the Israel Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaliuzhnyi-Verbovetskyi, D.S., Vinnikov, V. Noncommutative rational functions, their difference-differential calculus and realizations. Multidim Syst Sign Process 23, 49–77 (2012). https://doi.org/10.1007/s11045-010-0122-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11045-010-0122-3

Keywords

Navigation