Skip to main content

Advertisement

Log in

A computer-aided diagnostic system for mammograms based on YOLOv3

  • 1182: Deep Processing of Multimedia Data
  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Due to a large amount of noise in medical images, the task of detecting and classifying the lesions of mammograms remains a huge challenge. Based on the existing deep learning methods, focusing on the diversity of breast cancer lesion types, this paper proposes a computer-aided diagnosis system based on YOLOv3 (You Only Look Once version 3) convolutional neural network for mammograms. In this system, we integrate detection and multi-classification problems of breast lesions into a regression problem, thereby simultaneously accomplish the two tasks in one framework. The proposed computer-aided diagnosis system is mainly divided into three components: preprocessing part of the original mammograms, deep convolutional neural network based on YOLOv3, processing and evaluation of the network output. We use the dataset from CBIS-DDSM to train three models: general model, mass model and microcalcification model. These trained models can detect the position of the input mammograms in different situations, and then classify them into mass, microcalcification, benign, malignant, and other categories. After evaluating the performance by using test set images, the accuracy rates of the general model, mass model, and microcalcification model trained by our system reach 93.667 %, 97.767 %, 96.870 % in the detection task, and 93.927 %, 98.121 %, 97.045 % in the classification task. The computer-aided diagnosis system performs well in lesion detection and classification tasks with high-noise mammograms, reflecting well robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Al-masni MA, Al-antari MA, Park JM, Gi G, Kim TY, Rivera P, Valarezo E, Han S-M, Kim TS (2017) Detection and classification of the breast abnormalities in digital mammograms via regional convolutional neural network. In: 2017 39th annual international conference of the IEEE engineering in medicine and biology society (EMBC). [Online]. Available: https://ieeexplore.ieee.org/document/8037053/. IEEE, Seogwipo, pp 1230–1233

  2. Al-masni MA, Al-antari MA, Park J-M, Gi G, Kim T-Y, Rivera P, Valarezo E, Choi M-T, Han S-M, Kim T-S (2018) Simultaneous detection and classification of breast masses in digital mammograms via a deep learning YOLO-based CAD system. Comput Methods Prog Biomed 157:85–94. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0169260717314980

    Article  Google Scholar 

  3. Al-antari MA, Al-masni MA, Park S-U, Park J, Metwally MK, Kadah YM, Han S-M, Kim T-S (2018) An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J Med Biol Eng 38(3):443–456. [Online]. Available: http://link.springer.com/10.1007/s40846-017-0321-6

    Article  Google Scholar 

  4. Arevalo J, González FA, Ramos-Pollán R, Oliveira JL, Guevara Lopez MA (2016) Representation learning for mammography mass lesion classification with convolutional neural networks. Comput Methods Prog Biomed 127:248–257. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0169260715300110

    Article  Google Scholar 

  5. Arfan M (2017) Deep learning based computer aided diagnosis system for breast mammograms. Int J Adv Comput Sci App 8 (7):286–290. [Online]. Available: http://thesai.org/Publications/ViewPaper?Volume=8&Issue=7&Code=ijacsa&SerialNo=38

    Google Scholar 

  6. Ben-Ari R, Akselrod-Ballin A, Karlinsky L, Hashoul S (2017) Domain specific convolutional neural nets for detection of architectural distortion in mammograms. In: 2017 IEEE 14th international symposium on biomedical imaging (ISBI 2017). [Online]. Available: http://ieeexplore.ieee.org/document/7950581/. IEEE, Melbourne, pp 552–556

  7. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 68(6):394–424. [Online]. Available: http://doi.wiley.com/10.3322/caac.21492

    Google Scholar 

  8. Bria A, Marrocco C, Galdran A, Campilho A, Marchesi A, Mordang J-J, Karssemeijer N, Molinara M, Tortorella F (2017) Spatial enhancement by dehazing for detection of microcalcifications with convolutional nets. In: Battiato S, Gallo G, Schettini R, Stanco F (eds) Image analysis and processing - ICIAP 2017. series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-319-68548-9_27, vol 10485. Springer International Publishing, Cham, pp 288–298

  9. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, Moore S, Phillips S, Maffitt D, Pringle M et al (2013) The cancer imaging archive (TCIA): maintaining and operating a public information repository. J Digit Imag 26(6):1045–1057. publisher: Springer. [Online]. Available: http://link-springer-com-s.vpn.whu.edu.cn:8118/article/10.1007/s10278-013-9622-7

    Article  Google Scholar 

  10. Deng J, Dong W, Socher R, Li L-J, Li K, Fei-Fei L (2009) ImageNet: a large-scale hierarchical image database, 248–255. [Online]. Available: https://ieeexplore.ieee.org/document/5206848

  11. Gøtzsche PC, Jørgensen KJ (2013) Screening for breast cancer with mammography. Cochrane Database Syst Rev. [Online]. Available: http://doi.wiley.com/10.1002/14651858.CD001877.pub5

  12. Heath M, Bowyer K, Kopans D, Kegelmeyer P, Moore R, Chang K, Munishkumaran S (1998) Current status of the digital database for screening mammography. In: Viergever MA, Karssemeijer N, Thijssen M, Hendriks J, van Erning L (eds) Digital mammography. series Title: Computational Imaging and Vision. [Online]. Available: http://link.springer.com/10.1007/978-94-011-5318-8_75, vol 13. Springer Netherlands, Dordrecht, pp 457–460

  13. Jung H, Kim B, Lee I, Yoo M, Lee J, Ham S, Woo O, Kang J (2018) Detection of masses in mammograms using a one-stage object detector based on a deep convolutional neural network. PLOS ONE 13(9):e0203355. [Online]. Available: https://dx.plos.org/10.1371/journal.pone.0203355

    Article  Google Scholar 

  14. Kingma DP, Ba J (2017) Adam: a method for stochastic optimization, arXiv:1412.6980 [cs]

  15. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90. [Online]. Available: https://dl.acm.org/doi/10.1145/3065386

    Article  Google Scholar 

  16. Kooi T, Gubern-Merida A, Mordang J-J, Mann R, Pijnappel R, Schuur K, den Heeten A, Karssemeijer N (2016) A comparison between a deep convolutional neural network and radiologists for classifying regions of interest in mammography. In: Tingberg A, Lång K, Timberg P (eds) Breast imaging. series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-319-41546-8_7, vol 9699. Springer International Publishing, Cham, pp 51–56

  17. Lee CH, Dershaw DD, Kopans D, Evans P, Monsees B, Monticciolo D, Brenner RJ, Bassett L, Berg W, Feig S, Hendrick E, Mendelson E, D’Orsi C, Sickles E, Burhenne LW (2010) Breast cancer screening with imaging: recommendations from the society of breast imaging and the ACR on the use of mammography, breast MRI, breast ultrasound, and other technologies for the detection of clinically occult breast cancer. J Amer College Radiol 7(1):18–27. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S1546144009004803

    Article  Google Scholar 

  18. Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2018) Focal loss for dense object detection, arXiv:1708.02002 [cs]

  19. Ma J, Liang S, Li X, Li H, Menze BH, Zhang R, Zheng W-S (2019) Cross-view relation networks for mammogram mass detection, arXiv:1907.00528 [cs]

  20. Mordang J-J, Janssen T, Bria A, Kooi T, Gubern-Mérida A, Karssemeijer N (2016) Automatic microcalcification detection in multi-vendor mammography using convolutional neural networks. In: Tingberg A, Lång K, Timberg P (eds) Breast imaging. series Title: Lecture Notes in Computer Science. [Online]. Available: http://link.springer.com/10.1007/978-3-319-41546-8_5, vol 9699. Springer International Publishing, Cham, pp 35–42

  21. Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS (2012) INbreast. Acad Radiol 19(2):236–248. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S107663321100451X

    Article  Google Scholar 

  22. Omonigho EL, David M, Adejo A, Aliyu S (2020) Breast cancer: tumor detection in mammogram images using modified alexnet deep convolution neural network. In: 2020 international conference in mathematics, computer engineering and computer science (ICMCECS). [Online]. Available: https://ieeexplore.ieee.org/document/9077659/. IEEE, Ayobo, Ipaja, Lagos, Nigeria, pp 1–6

  23. Platania R, Shams S, Yang S, Zhang J, Lee K, Park S-J (2017) Automated breast cancer diagnosis using deep learning and region of interest detection (BC-DROID). In: Proceedings of the 8th ACM international conference on bioinformatics, computational biology,and health informatics - ACM-BCB ’17. [Online]. Available: http://dl.acm.org/citation.cfm?doid=3107411.3107484. ACM Press, Boston, pp 536–543

  24. Redmon J, Farhadi A (2018) YOLOv3: an incremental improvement, 1–6. [Online]. Available: https://pjreddie.com/media/files/papers/YOLOv3.pdf

  25. Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object detection. In: 2016 IEEE conference on computer vision and pattern recognition (CVPR). [Online]. Available: http://ieeexplore.ieee.org/document/7780460/. IEEE, Las Vegas, pp 779–788

  26. Ren S, He K, Girshick R, Sun J (2016) Faster R-CNN: towards real-time object detection with region proposal networks, arXiv:1506.01497 [cs]

  27. Sarath CK, Chakravarty A, Ghosh N, Sarkar T, Sethuraman R, Sheet D (2020) A two-stage multiple instance learning framework for the detection of breast cancer in mammograms, arXiv:2004.11726 [cs]

  28. Sawyer-Lee R, Gimenez F, Hoogi A, Rubin D (2016) Curated breast imaging subset of DDSM, Cancer Imag Archive. [Online]. Available: https://wiki.cancerimagingarchive.net/x/lZNXAQ

  29. Siegel RL, Miller KD, Jemal A (2020) Cancer statistics, 2020. CA: A Cancer J Clin 70(1):7–30. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.3322/caac.21590

    Google Scholar 

  30. Sun L, Wang J, Hu Z, Xu Y, Cui Z (2019) Multi-view convolutional neural networks for mammographic image classification. IEEE Access 7:126273–126282. [Online]. Available: https://ieeexplore.ieee.org/document/8822935/

    Article  Google Scholar 

  31. Sun W, Tseng T-LB, Zhang J, Qian W (2017) Enhancing deep convolutional neural network scheme for breast cancer diagnosis with unlabeled data. Comput Med Imag Graph 57:4–9. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/S0895611116300696

    Article  Google Scholar 

  32. Suzuki S, Zhang X, Homma N, Ichiji K, Sugita N, Kawasumi Y, Ishibashi T, Yoshizawa M (2016) Mass detection using deep convolutional neural network for mammographic computer-aided diagnosis. In: 2016 55th annual conference of the society of instrument and control engineers of Japan (SICE). [Online]. Available: http://ieeexplore.ieee.org/document/7749265/. IEEE, Tsukuba, pp 1382–1386

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Cai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Chen, T. & Cai, B. A computer-aided diagnostic system for mammograms based on YOLOv3. Multimed Tools Appl 81, 19257–19281 (2022). https://doi.org/10.1007/s11042-021-10505-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-021-10505-y

Keywords

Navigation