Skip to main content
Log in

Next generation sequencing in cardiomyopathy: towards personalized genomics and medicine

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Next generation sequencing (NGS) is perhaps one of the most exciting advances in the field of life sciences and biomedical research in the last decade. With the availability of massive parallel sequencing, human DNA blueprint can be decoded to explore the hidden information with reduced time and cost. This technology has been used to understand the genetic aspects of various diseases including cardiomyopathies. Mutations for different cardiomyopathies have been identified and cataloging mutations on phenotypic basis are underway and are expected to lead to new discoveries that may translate to novel diagnostic, prognostic and therapeutic targets. With ease in handling NGS, cost effectiveness and fast data output, NGS is now considered as a diagnostic tool for cardiomyopathy by providing targeted gene sequencing. In addition to the number of genetic variants that are identified in cardiomyopathies, there is a need of quicker and easy way to screen multiple genes associated with the disease. In this review, an attempt has been made to explain the NGS technology, methods and applications in cardiomyopathies and their perspective in clinical practice and challenges which are to be addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Zhou X, Ren L, Meng Q, Li Y, Yu Y, Yu J (2010) The next-generation sequencing technology and application. Protein Cell 1:520–536

    Article  CAS  PubMed  Google Scholar 

  3. Metzker ML (2010) Applications of next-generation sequencing, sequencing technologies: the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  4. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264

    Article  CAS  PubMed  Google Scholar 

  5. Mardis ER (2013) Next-generation sequencing platforms. Annu Rev Anal Chem 6:287–303

    Article  CAS  Google Scholar 

  6. Miller FA, Hayeems RZ, Bytautas JP (2013) Testing personalized medicine: patient and physician expectations of next-generation genomic sequencing in late-stage cancer care. Eur J Hum Genet 22:391–395. doi:10.1038/ejhg.2013.158

    Article  PubMed Central  PubMed  Google Scholar 

  7. Papasavva T, van Ijcken WF, Kockx CE et al (2013) Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to β-thalassaemia. Eur J Hum Genet 21(12):1403–1410

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Sobreira NL, Cirulli ET, Avramopoulos D et al (2010) Whole-genome sequencing of a single proband together with linkage analysis identifies a Mendelian disease gene. PLoS Genet. doi:10.1371/journal.pgen.100099

    Google Scholar 

  9. Chen Z, Wang JL, Tang BS et al (2011) Using next-generation sequencing as a genetic diagnostic tool in rare autosomal recessive neurologic Mendelian disorders. Neurobiol Aging 34(10):2442.e11-7. doi:10.1016/j.neurobiolaging.2013.04.029

    Google Scholar 

  10. Yang Y, Muzny DM, Jeffrey GR et al (2013) Clinical whole-exome sequencing for the diagnosis of Mendelian disorders. N Engl J Med 369:1502–1511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Mutai H, Suzuki N, Shimizu A et al (2013) Diverse spectrum of rare deafness genes underlies early-childhood hearing loss in Japanese patients: a cross-sectional, multi-center next-generation sequencing study. Orphanet J Rare Dis 8:172

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sankaran VG, Ghazvinian R, Do R et al (2012) Exome sequencing identifies GATA1 mutations resulting in Diamond–Blackfan anemia. J Clin Invest 122:2439–2443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Boycott KM, Vanstone MR, Bulman DE, Mackenzie AE (2013) Rare-disease genetics in the era of next-generation sequencing: discovery to translation. Nat Rev Genet 14:681–691

    Article  CAS  PubMed  Google Scholar 

  14. Harris TD, Buzby PR, Babcock H et al (2008) Single-molecule DNA sequencing of a viral genome. Science 320(5872):106–109

    Article  CAS  PubMed  Google Scholar 

  15. Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of bacterial genomes. Genome Res 18(2):324–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Pickrell JK, Marioni JC, Pai AA et al (2010) Understanding mechanisms underlying human gene expression variation with RNA sequencing. Nature 464(7289):768–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hiller D, Jiang H, Xu W, Wong WH (2009) Identifiability of isoform deconvolution from junction arrays and RNA-Seq. Bioinformatics 25(23):3056–3059

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Kharchenko PV, Tolstorukov MY, Park PJ (2008) Design and analysis of ChIP-seq experiments for DNA-binding proteins. Nat Biotechnol 26(12):1351–1359

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Veeramah KR, Hammer MF (2014) The impact of whole-genome sequencing on the reconstruction of human population history. Nat Rev Genet 15:149–162

    Article  CAS  PubMed  Google Scholar 

  20. Gravel S, Zakharia F, Moreno-Estrada A et al (2013) Reconstructing native American migrations from whole-genome and whole-exome data. PLoS Genet 9(12):e1004023

    Article  PubMed Central  PubMed  Google Scholar 

  21. Ingolia NT (2014) Ribosome profiling: new views of translation, from single codons to genome scale. Nat Rev Genet 15:205–213

    Article  CAS  PubMed  Google Scholar 

  22. Bragg L, Tyson GW (2014) Metagenomics using next-generation sequencing environmental microbiology. Methods Mol Biol 1096:183–201

    Article  CAS  PubMed  Google Scholar 

  23. Rogers GB, Bruce KD (2010) Next-generation sequencing in the analysis of human microbiota: essential considerations for clinical application. Mol Diagn Ther 14(6):343–350

    Article  CAS  PubMed  Google Scholar 

  24. Ross JS, Cronin M (2011) Whole cancer genome sequencing by next-generation methods. Am J Clin Pathol 136(4):527–539

    Article  CAS  PubMed  Google Scholar 

  25. Ullah S, John P, Bhatti A (2014) MicroRNAs with a role in gene regulation and in human diseases. Mol Biol Rep 41:225–232

    Article  CAS  PubMed  Google Scholar 

  26. Zywicki M, Bakowska-Zywicka K, Polacek N (2012) Revealing stable processing products from ribosome-associated small RNAs by deep-sequencing data analysis. Nucleic Acids Res 40:4013–4024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Friedländer MR, Chen W, Adamidi C et al (2008) Discovering microRNAs from deep sequencing data using miRDeep. Nat Biotechnol 26:407–415

    Article  PubMed  Google Scholar 

  28. Biesecker LG, Spinner NB (2013) A genomic view of mosaicism and human disease. Nat Rev Genet 14:307–320. doi:10.1038/nrg3424

    Article  CAS  PubMed  Google Scholar 

  29. Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. doi:10.1152/physrev.00045.2009

    Article  CAS  PubMed  Google Scholar 

  30. Albert TJ, Molla MN, Muzny DM et al (2007) Direct selection of human genomic loci by microarray hybridization. Nat Methods 4:903–905

    Article  CAS  PubMed  Google Scholar 

  31. Hodges E, Xuan Z, Balija V et al (2007) Genome-wide in situ exon capture for selective resequencing. Nat Genet 39(12):1522–1527

    Article  CAS  PubMed  Google Scholar 

  32. Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of ion torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genom 13:341

    Article  CAS  Google Scholar 

  33. Mook ORF, Haagmans MA, Soucy JF et al (2013) Targeted sequence capture and GS-FLX Titanium sequencing of 23 hypertrophic and dilated cardiomyopathy genes: implementation into diagnostics. J Med Genet 50:614–626. doi:10.1136/jmedgenet-2012-101231

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Ng SB, Turner EH, Robertson PD et al (2009) Targeted capture and massively parallel sequencing of 12 human exomes. Nature 461(7261):272–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Botstein D, Risch N (2003) Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nat Genet 33(Suppl):228–237

    Article  CAS  PubMed  Google Scholar 

  36. Reinhardt JA, Baltrus DA, Nishimura MT, Jeck WR, Jones CD, Dangl JL (2009) De novo assembly using low-coverage short read sequence data from the rice pathogen Pseudomonas syringae pv. oryzae. Genome Res 19(2):294–305

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Nowrousian M, Stajich JE, Chu M et al (2010) De novo assembly of a 40 Mb eukaryotic genome from short sequence reads: Sordaria macrospora, a model organism for fungal morphogenesis. PLoS Genet 6(4):e1000891

    Article  PubMed Central  PubMed  Google Scholar 

  38. Shin SC, Ahn DH, Kim SJ, Lee H et al (2013) Advantages of single-molecule real-time sequencing in high-GC content genomes. PLoS One 8(7):e68824. doi:10.1371/journal.pone.0068824

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Maron BJ, Doerer JJ, Haas TS, Tierney DM, Mueller FO (2009) Sudden deaths in young competitive athletes: analysis of 1866 deaths in the United States, 1980–2006. Circulation 119:1085–1092

    Article  PubMed  Google Scholar 

  40. Elliott PM, Poloniecki J, Dickie S, Sharma S et al (2000) Sudden death in hypertrophic cardiomyopathy: identification of high risk patients. J Am Coll Cardiol 36:2212–2218

    Article  CAS  PubMed  Google Scholar 

  41. Lopes LR, Zekavati A, Syrris P et al (2013) Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J Med Genet 50:228–239

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Meder B, Haas J, Keller A et al (2011) Targeted next-generation sequencing for the molecular genetic diagnostics of cardiomyopathies. Circ Cardiovasc Genet 4:110–122

    Article  CAS  PubMed  Google Scholar 

  43. Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113:1807–1816

    Article  PubMed  Google Scholar 

  44. Richardson P, McKenna W, Bristow M et al (1996) Report of the 1995 World Health Organization/International Society and Federation of Cardiology task force on the definition and classification of cardiomyopathies. Circulation 93(5):841–842

    Article  CAS  PubMed  Google Scholar 

  45. Elliott P, Anderson B, Arbustini E et al (2008) Classification of cardiomyopathies: a position statement from the European working group on myocardial and pericardial diseases. Eur Heart J 29:270–276

    Article  PubMed  Google Scholar 

  46. ARVD/C Genetic Variants Database. Accessed 6 March 2014

  47. Human Genetic Mutation Database [HGMD]. Accessed June 2013.

  48. Teare D (1958) Asymmetrical hypertrophy of the heart in young adults. Br Heart J 20:1–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Hollman A, Goodwin JF, Teare D, Renwick JW (1960) A family with obstructive cardiomyopathy (asymmetrical hypertrophy). Br Heart J 321:1372–1378

    Google Scholar 

  50. Greaves SC, Roche AHG, Neutze JM, Whitlock RML, Veale AMO (1987) Inheritance of hypertrophic cardiomyopathy: a cross sectional and Mmode echocardiographic study of 50 families. Br Heart J 58:259–266

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Geisterfer-Lowrance AA, Kass S, Tanigawa G et al (1990) A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62:999–1006

    Article  CAS  PubMed  Google Scholar 

  52. Elliot P (2000) Diagnosis and management of dilated cardiomyopathy. Heart 84:106

    Article  Google Scholar 

  53. Ku L, Feiger J, Taylor M, Mestroni L (2003) Familial dilated cardiomyopathy. Circulation 108:e118–e121

    Article  PubMed  Google Scholar 

  54. Hershberger RE, Morales A, Siegfried JD (2010) Clinical and genetic issues in dilated cardiomyopathy: a review for genetics professionals. Genet Med 12(11):655–667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Biswas A, Das S, Seth S et al (2012) Role of modifying genes on the severity of rare mutation of MYH7 gene in hypertrophic obstructive cardiomyopathy. J Clin Exp Cardiol 3:225. doi:10.4172/2155-9880.1000225

    Article  Google Scholar 

  56. Raju H, Alberg C, Sagoo GS, Burton H, Behr ER (2011) Inherited cardiomyopathies. BMJ 343:d6966

    Article  PubMed  Google Scholar 

  57. Wells QS, Becker JR, Su YR et al (2013) Whole exome sequencing identifies a causal RBM20 mutation in a large pedigree with familial dilated cardiomyopathy. Circ Cardiovasc Genet 6(4):317–326. doi:10.1161/CIRCGENETICS.113.000011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Campbell N, Sinagra G, Jones KL et al (2013) Whole exome sequencing identifies a troponin T mutation hot spot in familial dilated cardiomyopathy. PLoS One 8(10):e78104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Andreasen C, Neilsen JB, Refsgaard L et al (2013) New population-based exome data are questioning the pathogenicity of previously cardiomyopathy-associated genetic variants. Eur J Hum Genet 21:918–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  60. Majewski J, Schwartzentruber J, Lalonde E, Montpetit A, Jabado N (2011) What can exome sequencing do for you? J Med Genet 48:580–589

    Article  CAS  PubMed  Google Scholar 

  61. Hershberger RE, Lindenfeld J, Mestroni L, Seidman CE, Taylor MR, Towbin JA (2009) Genetic evaluation of cardiomyopathy: a Heart Failure Society of America practice guideline. J Card Fail 15(2):83–97

    Article  PubMed  Google Scholar 

  62. Yancy CW, Jesup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure a report of the American College of Cardiology Foundation/American Heart Association task force on practice guidelines. Circulation 128:e240–e327

    Article  PubMed  Google Scholar 

  63. Michels M, Hoedemaekers YM, Kofflard MJ et al (2007) Familial screening and genetic counseling in hypertrophic cardiomyopathy: the Rotterdam experience. Neth Heart J 15:184–190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Taylor MRG, Carniel E, Mestroni L (2004) Familial hypertrophic cardiomyopathy: clinical features, molecular genetics and molecular genetic testing. Expert Rev Mol Diagn 4(1):99–113

    Article  CAS  PubMed  Google Scholar 

  65. Ghezzi D, Baruffini E, Haack TB et al (2012) Mutations of the mitochondrial-tRNA modifier MTO1 cause hypertrophic cardiomyopathy and lactic acidosis. Am J Hum Genet 90:1079–1087

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  66. Arimura T, Ishikawa T, Nunoda S et al (2011) Dilated cardiomyopathy-associated BAG3 mutations impair Z-disc assembly and enhance sensitivity to apoptosis in cardiomyocytes. Hum Mutat 32(12):1481–1491

    Article  CAS  PubMed  Google Scholar 

  67. Theis JL, Sharpe KM, Matsumoto ME et al (2011) Homozygosity mapping and exome sequencing reveal GATAD1 mutation in autosomal recessive dilated cardiomyopathy. Circ Cardiovasc Genet 4(6):585–594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Supported by Grants from the University Grants Commission (UGC) to V. R. Rao and Department of Biotechnology (DBT), Govt. of India to V. R. Rao, Sandeep Seth and S. K. Maulik is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Maulik.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Rao, V.R., Seth, S. et al. Next generation sequencing in cardiomyopathy: towards personalized genomics and medicine. Mol Biol Rep 41, 4881–4888 (2014). https://doi.org/10.1007/s11033-014-3418-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3418-9

Keywords

Navigation