Skip to main content
Log in

Circadian rhythm of homocysteine is hCLOCK genotype dependent

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Homocysteine (Hcy) is known to be a prognostic marker for neurological, cardiovascular and cerebrovascular diseases and several other pathophysiological conditions. A sudden surge in Hcy can increase cardiovascular events. Hemodynamic modulations are known to be associated with individual’s chronotype. Therefore, precise monitoring of Hcy is crucial for evaluating its impact on risk. The aim of the present study was to investigate the rhythmicity of Hcy under controlled dietary conditions and whether this rhythmicity is under the genetic control of circadian rhythm. Five subjects were selected from 200 Malayalam speaking healthy ethnic individuals who were screened for functionally critical variants of MTHFR and hCLOCK genes. MTHFR is the rate-limiting enzyme in the methionine cycle and critical for regulating Hcy levels while hCLOCK is a critical gene responsible in regulating the day and night cycles. Rhythmicity in Hcy levels were observed in all the subjects with a consensus on a morning nadir and an evening peak. Gender specific stratification of Hcy levels were observed among similar genotypes of MTHFR and hCLOCK genes. Variations from the conventional rhythmicity of Hcy were observed among similar genotypes of MTHFR and dissimilar hCLOCK genotypes. A reduced plasma Hcy in hCLOCK rs1801260 CC genotype individuals were observed in contrast to CT genotype individuals. The study tends to suggest that Hcy and body time are genetically interdependent and throws light on some of the previously unexplained reasons for variability in Hcy levels. A population specific variation of MTHFR and hCLOCK genes also highlights ethnicity specific risk management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schalinske KL, Smazal AL (2012) Homocysteine imbalance: a pathological metabolic marker. Adv Nutr 3:755–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Bostom AG, Shemin D, Verhoef P, Nadeau MR, Jacques PF, Selhub J et al (1997) Elevated fasting total plasma homocysteine levels and cardiovascular disease outcomes in maintenance dialysis patients. A prospective study. Arterioscler Thromb Vasc Biol 17:2554–2558

    Article  CAS  PubMed  Google Scholar 

  3. Selhub J (1999) Homocysteine metabolism. Ann Rev Nutr 19:217–246

    Article  CAS  Google Scholar 

  4. Tanaka T, Scheet P, Giusti B, Bandinelli S, Piras MG, Usala G et al (2009) Genome-wide association study of vitamin B6, vitamin B12, folate, and homocysteine blood concentrations. Am J Hum Genet 84:477–482

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kang SS, Wong PW, Susmano A, Sora J, Norusis M, Ruggie N (1991) Thermolabile methylene tetrahydrofolate reductase: an inherited risk factor for coronary artery disease. Am J Hum Genet 48:536–545

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Castro R, Rivera I, Ravasco P, Jakobs C, Blom HJ, Camilo ME et al (2003) 5, 10-Methylenetetrahydrofolate reductase 677CT and 1298AC mutations are genetic determinants of elevated homocysteine. Q J Med 96:297–303

    Article  CAS  Google Scholar 

  7. Panagiotakos DB, Pitsavos C, Zeimbekis A, Chrysohoou C, Stefanadis C (2005) The association between lifestyle-related factors and plasma homocysteine levels in healthy individuals from the “ATTICA” Study. Int J Cardiol 98:471–477

    Article  PubMed  Google Scholar 

  8. Urgert R, van Vliet T, Zock PL, Katan MB (2000) Heavy coffee consumption and plasma homocysteine: a randomized controlled trial in healthy volunteers. Am J Clin Nutr 72:1107–1110

    CAS  PubMed  Google Scholar 

  9. Halsted CH (2001) Lifestyle effects on homocysteine and an alcohol paradox. Am J Clin Nutr 73:501–502

    CAS  PubMed  Google Scholar 

  10. Qiao SD, Liu N, Fan DS, Gao XH, Zhou JW (2008) Relationship between smoking and homocysteine concentration in ischemic stroke patients. Zhonghua Yi Xue Za Zhi 88:3342–3344

    CAS  PubMed  Google Scholar 

  11. Katzenberg D, Young T, Finn L, Lin L, King DP, Takahashi JS et al (1998) CLOCK polymorphism associated with human diurnal preference. Sleep 21:569–576

    CAS  PubMed  Google Scholar 

  12. Kuo K, Still R, Cale S, McDowell I (1997) Standardization (external and internal) of HPLC assay for plasma homocysteine. Clin Chem 43:1653–1655

    CAS  PubMed  Google Scholar 

  13. Frick B, Schröcksnadel K, Neurauter G, Wirleitner B, Artner-Dworzak E, Fuchs D (2003) Rapid measurement of total plasma homocysteine by HPLC. Clin Chim Acta 331:19–23

    Article  CAS  PubMed  Google Scholar 

  14. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory, NewYork

    Google Scholar 

  15. Cappuccio FP, Bell R, Perry IJ, Gilg J, Ueland PM, Refsum H et al (2002) Homocysteine levels in men and women of different ethnic and cultural background living in England. Atherosclerosis 164:95–102

    Article  CAS  PubMed  Google Scholar 

  16. Adachi H, Hirai Y, Fujiura Y, Matsuoka H, Satoh A, Imaizumi T (2002) Plasma homocysteine levels and atherosclerosis in Japan: epidemiological study by use of carotid ultrasonography. Stroke 33:2177–2181

    Article  CAS  PubMed  Google Scholar 

  17. Golbahar J, Rezaian G, Bararpour H (2004) Distribution of plasma total homocysteine concentrations in the healthy Iranians. Clin Biochem 37:149–151

    Article  CAS  PubMed  Google Scholar 

  18. Rasmussen K, Møller J, Lyngbak M, Pedersen AM, Dybkjaer L (1996) Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin Chem 42:630–636

    CAS  PubMed  Google Scholar 

  19. Sibani S, Christensen B, O’Ferrall E, Saadi I, Hiou-Tim F, Rosenblatt DS et al (2000) Characterization of six novel mutations in the methylene tetra hydro folate reductase (MTHFR) gene in patients with homocystinuria. Hum Mutat 15:280–287

    Article  CAS  PubMed  Google Scholar 

  20. Lavie L, Lavie P (2004) Daily rhythms in plasma levels of homocysteine. J. Circadian Rhythms 2:5

    Article  PubMed Central  PubMed  Google Scholar 

  21. McClung CA (2007) Circadian genes, rhythms and the biology of mood disorders. Pharmacol Ther 114:222–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M et al (2002) Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109:307–320

    Article  CAS  PubMed  Google Scholar 

  23. Oishi K, Miyazaki K, Kadota K, Kikuno R, Nagase T, Atsumi G et al (2003) Genome-wide expression analysis of mouse liver reveals CLOCK-regulated circadian output genes. J Biol Chem 278:41519–41527

    Article  CAS  PubMed  Google Scholar 

  24. Dankner R, Chetrit A, Dror GK, Sela BA (2007) Physical activity is inversely associated with total homocysteine levels, independent of C677T MTHFR genotype and plasma B vitamins. Age (Dordr) 29:219–227

    Article  CAS  Google Scholar 

  25. Bass J, Takahashi JS (2010) Circadian integration of metabolism and energetics. Science 330:1349–1354

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Minami Y, Kasukawa T, Kakazu Y et al (2009) Measurement of internal body time by blood metabolomics. PNAS 106:24

    Article  Google Scholar 

  27. Obeid R, Herrmann W (2006) Mechanisms of homocysteine neurotoxicity in neuro-degenerative diseases with special reference to dementia. FEBS Lett 580:2994–3005

    Article  CAS  PubMed  Google Scholar 

  28. Lavie L, Perelman A, Lavie P (2001) Plasma homocysteine levels in obstructive sleep apnea. Chest 120:900–908

    Article  CAS  PubMed  Google Scholar 

  29. Ma Y, Zhao X, Zhang W, Liu L, Wang Y, Fang R et al (2010) Homocysteine and ischemic stroke subtype: a relationship study in Chinese patients. Neurol Res 32:636–641

    Article  CAS  PubMed  Google Scholar 

  30. Muntjewerff JW, Kahn RS, Blom HJ, den Heijer M (2006) Homocysteine, methylene tetrahydro folate reductase and risk of schizophrenia: a meta-analysis. Mol Psychiatry 11:143–149

    Article  CAS  PubMed  Google Scholar 

  31. Kawakami C, Ohshige K, Tochikubo O (2008) Circadian variation in cardiovascular emergencies among the elderly. Clin Exp Hypertens 30:23–31

    Article  PubMed  Google Scholar 

  32. Peres I, Vetter C, Blautzik J, Reiser M, Pöppel E, Meindl T et al (2011) Chronotype predicts activity patterns in the neural underpinnings of the motor system during the day. Chronobiol Int 28:883–889

    Article  PubMed  Google Scholar 

  33. Tawakol A, Forgione MA, Stuehlinger M, Alpert NM, Cooke JP, Loscalzo J et al (2002) Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol 40:1051–1058

    Article  CAS  PubMed  Google Scholar 

  34. Martins PJ, D’Almeida V, Vergani N, Perez AB, Tufik S (2003) Increased plasma homocysteine levels in shift working bus drivers. Occup Environ Med 60:662–666

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Hankey GJ, Eikelboom JW (2001) Homocysteine and stroke. Curr Opin Neurol 14:95–102

    Article  CAS  PubMed  Google Scholar 

  36. Nestel PJ, Chronopoulos A, Cehun M (2003) Arterial stiffness is rapidly induced by raising the plasma homocysteine concentration with methionine. Atherosclerosis 171:83–86

    Article  CAS  PubMed  Google Scholar 

  37. Levi F, Zidani R, Misset JL (1997) Randomised multicentre trial of chronotherapy with oxaliplatin, fluorouracil, and folinic acid in metastatic colorectal cancer. International organization for cancer chronotherapy. Lancet 350:681–686

    Article  CAS  PubMed  Google Scholar 

  38. Kasukawa T, Sugimoto M, Hida A, Minami Y, Mori M, Honma S et al (2012) Human blood metabolite timetable indicates internal body time. Proc Natl Acad Sci USA 10:15036–15041

    Article  Google Scholar 

  39. Urbán R, Magyaródi T, Rigó A (2011) Morningness–eveningness, chronotypes and health-impairing behaviors in adolescents. Chronobiol Int 28:238–247

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the participants who voluntarily consented for the study.

Disclosure

Authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moinak Banerjee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paul, B., Saradalekshmi, K.R., Alex, A.M. et al. Circadian rhythm of homocysteine is hCLOCK genotype dependent. Mol Biol Rep 41, 3597–3602 (2014). https://doi.org/10.1007/s11033-014-3223-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-014-3223-5

Keywords

Navigation