Skip to main content

Advertisement

Log in

Alteration of tomato microRNAs expression during fruit development upon Cucumber mosaic virus and Tomato aspermy virus infection

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The economic importance of Solanaceae plant species is well documented, and tomato has become a model for fleshy fruit development and ripening studies. Plant microRNAs (miRNAs) are small endogenous RNAs that are involved in a variety of activities including plant development, signal transduction and protein degradation, as well as response to environment stress and pathogen invasion. Here in this study, we aimed at quantifying the expression alterations of nine miRNAs and target mRNAs in tomato flower and fruit development upon Cucumber mosaic virus (CMV) and Tomato aspermy virus infections. Three different CMV strains CMV-Fny, CMV-FnyΔ2b and CMV-Fny-satT1 were used in our investigation, and the miRNA/mRNA expression alterations were analyzed by real-time quantitative RT-PCR. The results shown the levels of several miRNA/mRNA pairs were increased upon virus infections. However, the increased level of individual miRNA differed for different virus strains, reflecting differences in severity of symptom phenotypes. The altered expression patterns of these miRNA/mRNA pairs and their predicted functions indicate the possible roles in flower and fruit development, and provide experimental data for understanding the miRNA-mediated phenotype alterations in tomato fruit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Reinhart B, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Gene Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  2. Brodersen P, Sakvarelidze-Achard L, Bruun-Rasmussen M, Dunoyer P, Yamamoto YY, Sieburth L, Voinnet O (2008) Widespread translational inhibition by plant miRNAs and siRNAs. Science 320:1185–1190

    Article  PubMed  CAS  Google Scholar 

  3. Dalmay T (2010) Short RNAs in Toamto. J Integr Plant Biol 52:388–392

    Article  PubMed  CAS  Google Scholar 

  4. Jones-Rhoades MW, Bartel DP, Bartel B (2006) microRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53

    Article  PubMed  CAS  Google Scholar 

  5. Garcia D (2008) A miracle in plant development: role of microRNAs in cell differentiation and patterning. Semin Cell Dev Biol 19:586–595

    Article  PubMed  CAS  Google Scholar 

  6. Amin I, Patil BL, Briddon RW, Mansoor S, Fauquet CM (2011) A common set of developmental miRNAs are upregulated in Nicotiana benthamiana by diverse begomoviruses. J Virol 8:143

    Article  CAS  Google Scholar 

  7. Pilcher RL, Moxon S, Pakseresht N, Moulton V, Manning K, Seymour G, Dalmay T (2007) Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta 226:709–717

    Article  PubMed  Google Scholar 

  8. Moxon S, Jing R, Szittya G, Schwach F, Pilcher RLR, Moulton V, Dalmay T (2008) Deep sequencing of tomato short RNAs identifies microRNAs targeting genes involved in fruit ripening. Genome Res 18:1602–1609

    Article  PubMed  CAS  Google Scholar 

  9. Yin Z, Li C, Han X, Shen F (2008) Identification of conserved microRNAs and their targets in tomato (lycopersicon esculentum). Gene 414:60–66

    Article  PubMed  CAS  Google Scholar 

  10. Zhang JG, Zeng R, Chen JS, Liu X, Liao QS (2008) Identification of conserved microRNAs and their targets from Solanum lycopersicum Mill. Gene 423:1–7

    Article  PubMed  CAS  Google Scholar 

  11. Mohorianu I, Schwach F, Jing R, Lopez-Gomollon S, Moxon S, Szittya G, Sorefan K, Moulton V, Dalmay T (2011) Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J 67:232–246

    Article  PubMed  CAS  Google Scholar 

  12. Ori N, Cohen AR, Etzioni A, Brand A, Yanai O, Shleizer S, Menda N, Amsellem Z, Efroni I, Pekker I, Alvarez JP, Blum E, Zamir D, Eshed Y (2007) Regulation of LANCEOLATE bymiR319 is required for compound-leaf development in tomato. Nat Genet 39:787–791

    Article  PubMed  CAS  Google Scholar 

  13. Berger Y, Harpaz-Saad S, Brand A, Melnik H, Sirding N, Alvarez JP, Zinder M, Samach A, Eshed Y, Ori N (2009) The NAC-domain transcription factor GOBLET species leaflet boundaries in compound tomato leaves. Development 136:823–832

    Article  PubMed  CAS  Google Scholar 

  14. Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T (2010) Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta 232:1009–1022

    Article  PubMed  CAS  Google Scholar 

  15. Palukaitis P, Garcia-Arenal F (2003) Cucumoviruses. Adv Virus Res 62:241–323

    Article  PubMed  CAS  Google Scholar 

  16. Zhang X, Yuan YR, Pei Y, Lin SS, Tuschl T, Patel DJ, Chuan NH (2006) Cucumber mosaic virus-encoded 2b suppressor inhibits Arabidopsis Argonaute 1 cleavage activity to counter plant defense. Genes Dev 20:3255–3268

    Article  PubMed  CAS  Google Scholar 

  17. Du ZY, Chen FF, Zhao ZJ, Liao QS, Palukaitis P, Chen JS (2008) The 2b protein and C-terminus of the 2a protein of Cucumber mosaic virus subgroup I strains both play a role in viral RNA accumulation and induction of symptoms. Virology 380:363–370

    Article  PubMed  CAS  Google Scholar 

  18. Cillo F, Mascia T, Pasciuto MM, Gallitelli D (2009) Differential effects of mild and severe cucumber mosaic virus strains in the perturbation of microRNA-regulated gene expression in tomato map to the 3′ sequence of RNA 2. Mol Plant Microbe Interact 22:1239–1249

    Article  PubMed  CAS  Google Scholar 

  19. González I, Martínez L, Rakitina DV, Lewsey MG, Atencio FA, Llave C, Kalinina NO, Carr JP, Palukaitis P, Canto T (2010) Cucumber mosaic virus 2b protein subcellular targets and interactions: their significance to RNA silencing suppressor activity. Mol Plant Microbe Interact 23:294–303

    Article  PubMed  Google Scholar 

  20. Lewsey MG, Murphy AM, MacLean D, Dalchau N, Westwood JH, Macaulay K, Bennet MH, Moulin M, Hanke DE, Powell G, Smith AG, Carr JP (2010) Disruption of two defensive signaling pathways by a viral RNA silencing suppressor. Mol Plant Microbe Interact 7:835–845

    Article  Google Scholar 

  21. Escriu F, Fraile A, Garcia-Arenal F (2000) Evolution of virulence in nature populations of the satellite RNA of cucumber mosaic virus. Phytopathology 90:480–485

    Article  PubMed  CAS  Google Scholar 

  22. Cillo F, Pasciuto MM, De Giovanni C, Finetti-Sialer MM, Ricciardi L, Gallitelli D (2007) Response of tomato and its wild relatives in the genus Solanum to cucumber mosaic virus and satellite RNA combinations. J Gen Virol 88:3166–3176

    Article  PubMed  CAS  Google Scholar 

  23. Dunoyer P, Lecellier C, Parizotto EA, Himber C, Voinnet O (2004) Probing the microRNAs and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 16:1235–1250

    Article  PubMed  CAS  Google Scholar 

  24. Qu F, Morris TF (2005) Suppressors of RNA silencing encoded by plant viruses and their role in viral infections. FEBS Lett 579:5958–5964

    Article  PubMed  CAS  Google Scholar 

  25. Bazzini AA, Hopp HE, Beachy RN, Asurmendi S (2007) Infection and coaccumulation of tobacco mosaic virus proteins alter microRNA levels, correlating with symptom and plant development. Proc Nat Acad Sci USA 104:12157–12162

    Article  PubMed  CAS  Google Scholar 

  26. Feng JL, Chen SN, Tang XS, Ding XF, Du ZY, Chen JS (2006) Quantitative determination of cucumber mosaic virus genome RNAs in virions by real-time reverse transcription polymerase chain reaction. Acta Biochem Biophys Sinica 38(10):669–676

    Article  CAS  Google Scholar 

  27. Liao QS, Zhu LP, Du ZY, Zeng R, Chen JS (2007) Satellite RNA-mediated reduction of Cucumber Mosaic Virus genomic RNAs accumulation in Nicotiana tabacum. Acta Biochem Biophys Sinica 39(3):217–223

    Article  CAS  Google Scholar 

  28. Feng JL, Wang K, Liu X, Chen SN, Chen JS (2009) The quantification of tomato microRNAs response to viral infection by stem-loop real-time RT-PCR. Gene 437:14–21

    Article  PubMed  CAS  Google Scholar 

  29. Aoki K, Yano K, Suzuki A et al (2010) Large-scale analysis of full-length cDNAs from the tomato (Solanum lycopersicum) cultivar micro-tom, a reference system for the Solanaceae genomics. BMC Genomics 11:210–225

    Article  PubMed  Google Scholar 

  30. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative Real-Time PCR experiments. Clin Chem 55(4):611–622

    Article  PubMed  CAS  Google Scholar 

  31. Yang T, Xue L, An L (2007) Functional diversity of miRNA in plant. Plant Sci 172:423–432

    Article  CAS  Google Scholar 

  32. Chuck G, Candela H, Hake S (2009) Big impacts by small RNAs in plant development. Curr Opin Plant Biol 12:81–86

    Article  PubMed  CAS  Google Scholar 

  33. Poethig RS (2009) Small RNAs and developmental timing in plants. Curr Opin Genet Dev 19(4):374–378

    Article  PubMed  CAS  Google Scholar 

  34. Voinnet O (2009) Origin, biogenesis, and activity of plant microRNAs. Cell 136:669–687

    Article  PubMed  CAS  Google Scholar 

  35. Liu Q, Chen YQ (2010) A new mechanism in plant engineering: the potential roles of microRNAs in molecular breeding for crop improvement. Biotechnol Adv 28(3):301–307

    Article  PubMed  CAS  Google Scholar 

  36. Zhang XH, Zou Z, Zhang JH, Zhang YY, Han QQ, Hu TX, Xu XG, Liu H, Li HX, Ye ZB (2011) Over-expression of sly-miR156 in tomato results in multiple vegetative and reproductive trait alterations and partial phenocopy of the sft mutant. FEBS Lett 585:435–439

    Article  PubMed  CAS  Google Scholar 

  37. Feng JL, Liu X, Lai LY, Chen JS (2011) Spatio-temporal expression of miRNAs in tomato tissues upon Cucumber mosaic virus and Tomato aspermy virus infections. Acta Biochim Biophys Sinica 43(4):258–266

    Article  CAS  Google Scholar 

  38. Feng JL, Lai LY, Lin RH, Jin CZ, Chen JS (2012) Differential effects of Cucumber mosaic virus satellite RNAs in the perturbation of microRNA-regulated gene expression in tomato. Mol Biol Rep 39:775–784

    Article  PubMed  CAS  Google Scholar 

  39. Mascia T, Santovito E, Gallitelli D, Cillo F (2010) Evaluation of reference genes for quantitative reverse-transcription polymerase chain reaction normalization in infected tomato plants. Mol Plant Pathol 11:805–816

    PubMed  CAS  Google Scholar 

  40. Parcy F, Bomblies K, Weigel D (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129:2519–2527

    PubMed  CAS  Google Scholar 

  41. Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of auxin response factor 10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52(1):133–146

    Article  PubMed  CAS  Google Scholar 

  42. Nagpal P, Ellis CM, Weber H, Ploense SE, Barkawi LS, Guilfoyle TJ, Hagen G, Alonso JM, Cohen JD, Farmer EE, Ecker JR, Reed JW (2005) Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development 132:4107–4118

    Article  PubMed  CAS  Google Scholar 

  43. Aukerman M, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  PubMed  CAS  Google Scholar 

  44. Wang H, Jones B, Li Z, Frasse P, Delalande C, Regad F, Chaabouni S, Latche A, Pech JC, Bouzayen M (2005) The tomato Aux/IAA transcription factor IAA9 is involved in fruit development and leaf morphogenesis. Plant Cell 17:2676–2692

    Article  PubMed  CAS  Google Scholar 

  45. Aida M, Ishida T, Tasaka M (1999) Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126:1563–1570

    PubMed  CAS  Google Scholar 

  46. Takada S, Hibara K, Ishida T, Tasaka M (2001) The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128:1127–1135

    PubMed  CAS  Google Scholar 

  47. Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    Article  PubMed  CAS  Google Scholar 

  48. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types. Plant J 57:313–321

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the grants from National Natural Science Foundation of China (30971898) and (30800716), and the Science Foundation of Zhejiang Sci-Tech University (ZSTU) under Grant No. 1016816-Y.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jishuang Chen.

Additional information

Junli Feng and Ruohong Lin contributed equally to this study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, J., Lin, R. & Chen, J. Alteration of tomato microRNAs expression during fruit development upon Cucumber mosaic virus and Tomato aspermy virus infection. Mol Biol Rep 40, 3713–3722 (2013). https://doi.org/10.1007/s11033-012-2447-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11033-012-2447-5

Keywords

Navigation