Skip to main content
Log in

Diversity array technology (DArT) 56K analysis, confirmed by SNP markers, distinguishes one сrested wheatgrass Agropyron species from two others found in Kazakhstan

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Molecular genetic polymorphism in three species and four subspecies of crested wheatgrass, Agropyron, was studied using 56K diversity array technology (DArT), and the results confirmed with four selected SNP Amplifluor markers. In total, 82 accessions from three species—A. desertorum, A. fragile, and two subspecies of A. cristatum (ssp. cristatum and ssp. pectinatum)—were collected from various regions of Kazakhstan or ordered from Genebank in Russia, for morphological taxonomy and molecular phylogenetic analyses. In the DArT clone analysis, two Agropyron species with narrow linear spikes, A. fragile and A. desertorum, were found to be genetically similar and fell within a single clade (A). Both species share similar eco-geographical origins. All samples of A. cristatum including the two subspecies, ssp. pectinatum and ssp. cristatum, which have short broad spikes, were interspersed within two other clades, B and C, more genetically distanced from the other species. Four SNP Amplifluor markers developed for genetic fragments on different chromosomes confirmed the distinction between the studied species. These results, derived from multiple molecular markers, suggest that the morphological taxonomy of these Agropyron species should be re-considered carefully in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bogdan VS (1937) Crested wheatgrass. Proceed Krasnodar Breeding Station.137-150. (In Russian).

  • Bukhteeva AV, Malyshev LL, Dzubekno NI, Kochegina AA (2016) Genetic resources of сrested wheatgrass—Agropyron Gaerth. VIR, St-Petersburg, 268 p (In Russian)

  • Che YH, Yang YP, Yang XM, Li XQ, Li LH (2011) Genetic diversity between ex situ and in situ samples of Agropyron cristatum (L.) Gaertn. based on simple sequence repeat molecular markers. Crop Past Sci 62(8):639–644. https://doi.org/10.1071/CP11065

    Article  Google Scholar 

  • Che Y, Yang Y, Yang X, Li X, Li L (2015) Phylogenetic relationship and diversity among Agropyron Gaertn. germplasm using SSRs markers. Plant Syst Evol 301:163–170. https://doi.org/10.1007/s00606-014-1062-4

    Article  Google Scholar 

  • Chen SY, Ma X, Zhang XQ, Huang LK, Zhou JN (2013) Genetic diversity and relationships among accessions of five crested wheatgrass species (Poaceae: Agropyron) based on gliadin analysis. Genet Mol Res 12(4):5704–5713. https://doi.org/10.4238/2013.November.18.19

    Article  CAS  PubMed  Google Scholar 

  • Cherukuri DP, Gupta SK, Charpe A, Koul S, Prabhu KV, Singh RB, Haq QMR, Chauhan SVS (2003) Identification of a molecular marker linked to an Agropyron elongatum-derived gene Lr19 for leaf rust resistance in wheat. Plant Breed 122(3):204–208

    Article  CAS  Google Scholar 

  • Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14(7):685–695. https://doi.org/10.1093/oxfordjournals.molbev.a025808

    Article  CAS  PubMed  Google Scholar 

  • Giancola S, McKhann HI, Bérard A, Camilleri C, Durand S, Libeau P et al (2006) Utilization of the three high-throughput SNP genotyping methods, the GOOD assay, Amplifluor and TaqMan, in diploid and polyploid plants. Theor Appl Genet 112(6):1115–1124. https://doi.org/10.1007/s00122-006-0213-6

    Article  CAS  PubMed  Google Scholar 

  • Howard EL, Whittock SP, Jakše J, Carling J, Matthews PD, Probasco G, Henning JA, Darby P, Cerenak A, Javornik B, Kilian A, Koutoulis A (2011) High-throughput genotyping of hop (Humulus lupulus L.) utilising diversity arrays technology (DArT). Theor Appl Genet 122:1265–1280. https://doi.org/10.1007/s00122-011-1529-4

    Article  CAS  PubMed  Google Scholar 

  • Hu ZM, Wang RRC, Larson SR, Palazzo AJ, Asay KH, Chatterton NJ (2001) Selection response for molecular markers associated with anthocyanin coloration and low-temperature growth traits in crested wheatgrasses. Canad J Plant Sci 81(4):665–671

    Article  CAS  Google Scholar 

  • Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267. https://doi.org/10.1093/molbev/msj030

    Article  CAS  PubMed  Google Scholar 

  • James KE, Schneider H, Ansell SW, Evers M, Robba L, Uszynski G, Pedersen N, Newton AE, Russell SJ, Vogel JC, Kilian A (2008) Diversity arrays technology (DArT) for pan-genomic evolutionary studies of non-model organisms. PLoS One 3(2):e1682. https://doi.org/10.1371/journal.pone.0001682

    Article  PubMed  PubMed Central  Google Scholar 

  • Khripin Y (2006) High-throughput genotyping with energy transfer-labeled primers. In: Didenko VV (ed) Methods in molecular biology, Vol 335, Fluorescent energy transfer nucleic acid probes: designs and protocols. Humana Press Inc, Totowa, NJ, pp 215–240

    Chapter  Google Scholar 

  • Kilian A, Huttner E, Wenzl P, Jaccoud D, Carling J et al (2005) The fast and the cheap: SNP and DArT-based whole genome profiling for crop improvement. In: Tuberosa R, Phillips RL, Gale M (eds) In the wake of the double helix: from the green revolution to the gene revolution, Proceedings of the International Congress. Avenue media, Bologna, pp 443–461

    Google Scholar 

  • Kroc M, Koczyk G, Święcicki W, Kilian A, Nelson MN (2014) New evidence of ancestral polyploidy in the Genistoid legume Lupinus angustifolius L. (narrow-leafed lupin). Theor Appl Genet 127:1237–1249. https://doi.org/10.1007/s00122-014-2294-y

    Article  PubMed  Google Scholar 

  • Kruppa K, Türkösi E, Mayer M, Tóth V, Vida G, Szakács É, Molnár-Láng M (2016) McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet 57:427–437. https://doi.org/10.1007/s13353-016-0343-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu XP, Xiao BG, Li YP, Gui YJ, Wang Y, Fan LJ (2013) Diversity arrays technology (DArT) for studying the genetic polymorphism of flue-cured tobacco (Nicotiana tabacum). J Zhejiang Univ Sci B (Biomed and Biotechnol) 14(7):570–577. https://doi.org/10.1631/jzus.B1200227

    Article  CAS  Google Scholar 

  • Lu Y, Yao M, Zhang J, Song L, Liu W, Yang X, Li X, Li L (2016) Genetic analysis of a novel broad-spectrum powdery mildew resistance gene from the wheat-Agropyron cristatum introgression line Pubing 74. Planta 244(3):713–723. https://doi.org/10.1007/s00425-016-2538-y

    Article  PubMed  Google Scholar 

  • Majidi MM, Mirlohi A (2010) Genetic similarities among Iranian populations of Festuca, Lolium, Bromus and Agropyron using amplified fragments length polymorphism (AFLP) markers. Iran J Biotechnol 8(1): 16–23

  • Mellish A, Coulman B, Ferdinandez Y (2002) Genetic relationships among selected crested wheatgrass cultivars and species determined on the basis of AFLP markers. Crop Sci 42(5):1662–1668

    Article  Google Scholar 

  • Ochoa V, Madrid E, Said M, Rubiales D, Cabrera A (2015) Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica 201(1):89–95. https://doi.org/10.1007/s10681-014-1190-5

    Article  Google Scholar 

  • Olukolu BA, Mayes S, Stadler F, Ng NQ, Fawole I, Dominique D, Azam-Ali SN, Abbott AG, Kole C (2012) Genetic diversity in Bambara groundnut (Vigna subterranean (L.) Verdc.) as revealed by phenotypic descriptors and DArT marker analysis. Genet Resour Crop Evol 59:347–358. https://doi.org/10.1007/s10722-011-9686-5

    Article  Google Scholar 

  • Przyborowski JA, Sulima P, Kuszewska A, Załuski D, Kilian A (2013) Phylogenetic relationships between four Salix L. species based on DArT markers. Int J Mol Sci 14:24113–24125. https://doi.org/10.3390/ijms141224113

    Article  PubMed  PubMed Central  Google Scholar 

  • Raman H, Raman R, Nelson MN, Aslam MN, Rajasekaran R, Wratten N, Cowling WA, Kilian A, Sharpe AG, Schondelmaier J (2012) Diversity array technology markers: genetic diversity analyses and linkage map construction in rapeseed (Brassica napus L.) DNA Res 19:51–65. https://doi.org/10.1093/dnares/dsr041

    Article  CAS  PubMed  Google Scholar 

  • Rickert AM, Borodina TA, Kuhn EJ, Lehrach H, Sperling S (2004) Refinement of single-nucleotide polymorphism genotyping methods on human genomic DNA: amplifluor allele-specific polymerase chain reaction versus ligation detection reaction-TaqMan. Anal Biochem 330:288–297. https://doi.org/10.1016/j.ab.2004.03.035

    Article  CAS  PubMed  Google Scholar 

  • Roorkiwal M, von Wettberg EJ, Upadhyaya HD, Warschefsky E, Rathore A, Varshney RK (2014) Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers. PLoS One 9(7):e102016. https://doi.org/10.1371/journal.pone.0102016

    Article  PubMed  PubMed Central  Google Scholar 

  • Rutherford S, Wilson PG, Rossetto M, Bonser SP (2015) Phylogenomics of the green ash eucalypts (Myrtaceae): a tale of reticulate evolution and misidentification. Aust Syst Bot 28:326–354. https://doi.org/10.1071/SB15038

    Article  Google Scholar 

  • Schachermayr GM, Messmer MM, Feuillet C, Winzeler H, Winzeler M, Keller B (1995) Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor Appl Genet 90(7–8):982–990

    CAS  PubMed  Google Scholar 

  • Shanjani PS, Jafari AA, Calagari M (2013) Genetic variation among wild and cultivated Agropyron desertorum populations based on total protein profiles and phenotypic traits. New Zeal J Crop Hort Sci 41(3):117–134. https://doi.org/10.1080/01140671.2013.793203

    Article  Google Scholar 

  • Sharp PJ, Kreis M, Shewry PR, Gale MD (1988) Location of β-amylase sequences in wheat and its relatives. Theor Appl Genet 75:286–290

    Article  CAS  Google Scholar 

  • Shavrukov Y, Zhumalin A, Serikbay D, Botayeva M, Otemisova A, Absattarova A, Sereda G, Sereda S, Shvidchenko V, Turbekova A, Jatayev S, Lopato S, Soole K, Langridge P (2016) Expression level of the DREB2-type gene, identified with Amplifluor SNP markers, correlates with performance and tolerance to dehydration in bread wheat cultivars from Northern Kazakhstan. Front Plant Sci 7:1736. https://doi.org/10.3389/fpls.2016.01736

    Article  PubMed  PubMed Central  Google Scholar 

  • Thudi M, Upadhyaya HD, Rathore A, Gaur PM, Krishnamurthy L, Roorkiwal M, Nayak SN, Chaturvedi SK, Basu PS, Gangarao NVPR, Fikre A, Kimurto P, Sharma PC, Sheshashayee MS, Tobita S, Kashiwagi J, Ito O, Killian A, Varshney RK (2014) Genetic dissection of drought and heat tolerance in chickpea through genome-wide and candidate gene-based association mapping approaches. PLoS One 9(5):e96758. https://doi.org/10.1371/journal.pone.0096758

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang S, Pang W, Ash G, Harper J, Carling J, Wenzl P, Huttner E, Zong X, Kilian A (2006) Low level of genetic diversity in cultivated Pigeonpea compared to its wild relatives is revealed by diversity arrays technology. Theor Appl Genet 113:585–595. https://doi.org/10.1007/s00122-006-0317-z

    Article  CAS  PubMed  Google Scholar 

  • Ye X, Lu Y, Liu W, Chen G, Han H, Zhang J, Yang X, Li X, Gao A, Li L (2015) The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theor Appl Genet 128(5):797–811. https://doi.org/10.1007/s00122-015-2466-4

    Article  PubMed  Google Scholar 

  • Yilmaz R, Cabi E, Dogan M (2014) Molecular analyses of the genera Eremopyrum (Ledeb.) Jaub. & Spach and Agropyron Gaertner (Poaceae) by PCR methods. Pak J Bot 46(3):769–774

    Google Scholar 

  • Yu X, Li X, Ma Y, Yu Z, Li Z (2012) A genetic linkage map of crested wheatgrass based on AFLP and RAPD markers. Genome 55(4):327–335. https://doi.org/10.1139/G2012-014

    Article  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) A diversity arrays technology (DArT) for whole-genome profiling of barley. PNAS 101(26):9915–9920. https://doi.org/10.1073/pnas.0401076101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White J, Law JR, MacKay I, Chalmers KJ,·Smith JSC, Kilian A, Powell W (2008) The genetic diversity of UK, US and Australian cultivars of Triticum aestivum measured by DArT markers and considered by genome. Theor Appl Genet 116:439–453. https://doi.org/10.1007/s00122-007-0681-3.

    Article  CAS  PubMed  Google Scholar 

  • Zhang LY, Marchand S, Tinker NA, Belzile F (2009) Population structure and linkage disequilibrium in barley assessed by DArT markers. Theor Appl Genet 119:43–52. https://doi.org/10.1007/s00122-009-1015-4

  • Zhang Y, Zhang J, Huang L, Gao A, Zhang J, Yang X (2015a) A high-density genetic map for P genome of Agropyron Gaertn. based on specific-locus amplified fragment sequencing (SLAF-seq). Planta 242(6):1335–1347. https://doi.org/10.1007/s00425-015-2372-7

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang J, Liu W, Han H, Lu Y, Yang X, Li X, Li L (2015b) Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet 128(9):1827–1837. https://doi.org/10.1007/s00425-015-2372-7

    Article  PubMed  Google Scholar 

  • Zhang J, Liu W, Han H, Song L, Bai L, Gao Z, Zhang Y, Yang X, Li X, Gao A, Li L (2015c) De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics 106(2):129–136. https://doi.org/10.1016/j.ygeno.2015.04.003

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zhang J, Liu W, Wu X, Yang X, Li X, Lu Y, Li L (2016) An intercalary translocation from Agropyron cristatum 6P chromosome into common wheat confers enhanced kernel number per spike. Planta 244(4):853–864. https://doi.org/10.1007/s00425-015-2372-7

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Yan B, Li F, Zhang J, Zhang J, Ma H, Liu W, Lu Y, Yang X, Li X, Liu X, Li L (2017a) RNA-seq analysis provides the first insights into the phylogenetic relationship and interspecific variation between Agropyron cristatum and wheat. Front Plant Sci 8:1644. https://doi.org/10.3389/fpls.2017.01644

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, Li X, Jia J, Liu X, Li L (2017b) Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J. https://doi.org/10.1111/pbi.12831

Download references

Acknowledgements

We wish to thank the staff and students of S. Seifullin Kazakh AgroTechnical University, Astana (Kazakhstan) for their support in this research. We also thank Carly Schramm for critical comments in the manuscript.

Funding

Research project no. 3733/GF4 has been supported by Ministry of Education and Science (Kazakhstan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Shavrukov.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Absattar, T., Absattarova, A., Fillipova, N. et al. Diversity array technology (DArT) 56K analysis, confirmed by SNP markers, distinguishes one сrested wheatgrass Agropyron species from two others found in Kazakhstan. Mol Breeding 38, 37 (2018). https://doi.org/10.1007/s11032-018-0792-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11032-018-0792-3

Keywords

Navigation