Skip to main content
Log in

Methodologies for weight estimation of fixed and flapping wing micro air vehicles

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

One of the important steps in the sizing process of fixed and flapping wing micro air vehicles (MAVs) is weight estimation of the electrical and structural components. In order to enhance the flight performance and endurance of MAVs, it is required to carefully estimate their weight with a minimum error. In this study, methodologies to estimate the weight of fixed and flapping wing MAVs are proposed. After dividing the total weight of the MAV into weights of structural and electrical components, these two weights are separately identified. The weight of the MAV electrical components is estimated by using engineering design techniques and the weight of the structure is identified by using statistical and computational methods. The proposed methodology for structural weight estimation is based on calculating the percentage of the used material in the construction of different parts of MAVs and then presenting the weight of each part in terms of the wing surface. The proposed computational method gives the exact estimation for the weight of each structure component, such as wing, tail, fuselage, and etc. Based on the offered method for weight estimation of MAVs, the weight estimation of a fixed wing MAV with inverse Zimmerman planform and a flapping wing MAV named “Thunder I” are experimentally shown. This developed methodology gives guidelines for weight estimation and determination of the structural weight percentages in order to design and fabricate efficient fixed and flapping wing MAVs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Srigrarom S, Chan WL (2015) Ornithopter type flapping wings for autonomous micro air vehicles. Aerospace 2(2):235–278

    Article  Google Scholar 

  2. Ellington CP, van den Berg C, Willmott AP, Thomas ALR (1996) Leading-edge vortices in insect flight. Nature 384:626–630

    Article  ADS  Google Scholar 

  3. Jones KD, Platzer MF (2009) Design and development considerations for biologically inspired flapping-wing micro air vehicles. Exp Fluids 46:799–810

    Article  Google Scholar 

  4. Fenelon MAA, Furukawa T (2010) Design of an active flapping wing mechanism and a micro aerial vehicle using a rotary actuator. Mech Mach Theory 45:137–146

    Article  MATH  Google Scholar 

  5. Hassanalian M, Radmanesh M, Sedaghat A (2014) Increasing flight endurance of MAVs using multiple quantum well solar cells. Internat J Aeronaut Sp Sci 15:212–217

  6. Xiaolei Z, Xiaoyi J, Yang X, Liqiang Z (2014) The research and design of experimental prototype in flapping-wing micro-air-vehicles. Adv Nat Sci 7:1–7

    Google Scholar 

  7. Abdelkefi A, Ghommem M (2013) Piezoelectric energy harvesting from morphing wing motions for micro air vehicles. Theor Appl Mech Lett 3:052004

  8. Mueller TJ (2001) Fixed and flapping wing aerodynamics for micro air vehicle applications. AIAA, New York

    Book  Google Scholar 

  9. Hassanalian M, Khaki H, Khosrawi M (2014) A new method for design of fixed wing micro air vehicle. Proc Inst Mech Eng J Aerosp Eng 229:837–850

    Google Scholar 

  10. Kurtulus DF, David L, Farcy A, Alemdaroglu N (2007) Aerodynamic characteristics of flapping motion in hover. Exp Fluids 44:23–36

    Article  Google Scholar 

  11. Liu H, Wang X, Nakata T, Yoshida K (2013) Aerodynamics and flight stability of bio-inspired, flapping-wing micro air vehicles. In: Autonomous control systems and vehicles. Volume 65 of the series intelligent systems, control and automation: Science and Engineering. Springer Japan, pp 145–157

  12. Mohamed A, Abdulrahim M, Watkins S, Clothier R (2015) Development and flight testing of a turbulence mitigation system for micro air vehicles. J Field Robot 33:639–660

  13. Combes TP, Malik AS, Bramesfeld G, McQuilling MW (2015) Efficient fluid-structure interaction method for conceptual design of flexible, fixed-wing micro-air-vehicle wings. AIAA J 53(6):1442–1454

    Article  ADS  Google Scholar 

  14. Shyy W, Aono H, Chimakurthi SK, Trizila P, Kang CK, Cesnik CE, Liu H (2010) Recent progress in flapping wing aerodynamics and aeroelasticity. Prog Aerosp Sci 46(7):284–327

    Article  Google Scholar 

  15. Mountcastle AM, Thomas LD (2010) Aerodynamic and functional consequences of wing compliance, animal locomotion. Springer, Berlin, pp 311–320

    Google Scholar 

  16. Nakata T, Liu H, Tanaka Y, Nishihashi N, Wang X, Sato A (2011) Aerodynamics of a bio-inspired flexible flapping-wing micro air vehicle. Bioinspir Biomimet 6(4):045002

    Article  ADS  Google Scholar 

  17. Jung S (2004) Design and development of a micro air vehicle (MAV): test-bed for vision-based control. Doctoral Dissertation, University of Florida, USA

  18. Jouannet C, Silva SE, Krus P (2004) Use of CAD tools for weight estimation in aircraft conceptual design. In: 24th International congress of the aeronautical sciences, Yokohama, Japan, 29 August–3 September 2004

  19. Ardema MD, Chambers MC, Patron AP, Hahn AS, Miura H, Moore MD (1996) Analytical fuselage and wing weight estimation of transport aircraft. NASA Technical Memorandum, 110392

  20. Roskam J (1985) Aircraft design part I: preliminary sizing of airplanes. Darcorporation, Lawrence

    Google Scholar 

  21. Torenbeek E (2013) Synthesis of subsonic airplane design: an introduction to the preliminary design of subsonic general aviation and transport aircraft, with emphasis on layout, aerodynamic design, propulsion and performance. Springer, Berlin

    Google Scholar 

  22. Raymer DP (2006) Aircraft design: a conceptual approach and Rds-student, software for aircraft design, sizing, and performance set (AIAA Education). AIAA, New York

    Google Scholar 

  23. Hassanalian M, Abdelkefi A (2016) Design, manufacturing, and flight testing of a fixed wing micro air vehicle with Zimmerman planform. Meccanica 51:1–18

  24. Hung C-C, Lin C-H, Teng Y-J, Chang C-M, Wu Y-K (2010) Study on mini UAV designs to payload requirements by airplane sizing methodology. In: AIAA 2010 conference and exhibit, Atlanta, Georgia, USA, 20–22 April 2010

  25. Mueller TJ, Kellogg JC, Ifju PG, Shkarayev SV (2007) Introduction to the design of fixed-wing micro air vehicles including three case studies. AIAA, Reston

    Google Scholar 

  26. Beasley B (2006) A study of planar and nonplaner membrane wing planforms for the design of a flapping wing micro air vehicle. Doctoral dissertation, University of Maryland, College Park

  27. Gillis B, Kozak J, Baker J, Hein D, Lemieux A, Fu TC, Hess JED, Phadnis A, Grilly A, Le C, Schoennagel V (2005) RIT micro air vehicle preliminary design report. Rochester Institute of Technology, New York

    Google Scholar 

  28. Gerrard C, Ward M (2007) Final year honours project micro air vehicle. The University of Adelaide, Adelaide

    Google Scholar 

  29. Ryan M (2012) Design optimization and classification of compliant mechanisms for flapping wing micro air vehicles. Doctoral dissertation, The Ohio State University, Columbus, Ohio

  30. Beng TW (2003) Dynamics and control of a flapping wing aircraft. Doctoral Dissertation, National University of Singapore

  31. http://aerosapien.blogspot.fr/2011_09_01_archive.html

  32. Silin D (2010) Aerodynamics and flight performance of flapping wing micro air vehicles. University of Arizona, Tucson

    Google Scholar 

  33. Müller M, Schröter A, Lindenberg C (2007) Technical description of the M.A.2C.’08 MAV. ENAC, Toulouse

    Google Scholar 

  34. (2006) IUT aerospace team report. Design, fabrication and flight test of HOMA MAV. Isfahan University of Technology

  35. Bode F, Lindenberg C, Müller M, Schröter A (2005) The Glotzer MAV: real time video from a low cost autonomously flying aircraft

  36. Coopanah D, Krashanitsa R, Malladi B, Silin D, Shkarayev S Design of dragonfly micro air vehicles at the University of Arizona. In: The 2rd US-European competition and workshop on micro air vehicles, September 2006, Florida, USA

  37. Richardson T (2007) Micro UAVs. In: The institution of engineering and technology seminar, University of Bristol, 20th February 2007

  38. Somers DM (2005) Effects of airfoil thickness and maximum lift coefficient on roughness sensitivity: 1997–1998. Period of performance. National Renewable Energy Laboratory

  39. Ma D, Zhao Y, Qiao Y, Li G (2015) Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number. Chin J Aeronaut 28(4):1003–1015

    Article  Google Scholar 

  40. Schmidt LV (1998) Introduction to aircraft flight dynamics. AIAA, New York

    Book  Google Scholar 

  41. Stevens BL, Lewis FL, Johnson EN (2015) Aircraft control and simulation: dynamics, controls design, and autonomous systems. Wiley, London

    Book  Google Scholar 

  42. Roskam J (1995) Airplane flight dynamics and automatic flight controls. DARcorporation, Lawrence

    Google Scholar 

  43. Hepperie M Basic design of flying wing models. www.wh-aerotools.de/airfoils

  44. Hassanalian M, Abdelkefi A, Wei M, Ziaei-Rad S (2016) A novel methodology for wing sizing of bio-inspired flapping wing micro air vehicles: theory and prototype. Acta Mech. doi:10.1007/s00707-016-1757-4

  45. Hassanalian M, Abdelkefi A (2016) Effective design of flapping wing actuation mechanisms: theory and experiments. AIAA Science and Technology Forum and Exposition, San Diego

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Abdelkefi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Substituting Eq. (6) into Eq. (7), one obtains:

$$t_{wing} = t_{MAC} = 0.06MAC = 0.06 \times \frac{2}{3}c_{r} \left( {\frac{{1 + \lambda + \lambda^{2} }}{1 + \lambda }} \right)$$

The parameter c r can be written as a function of the wing surface as follows:

$$S_{Wing} = (c_{r} + c_{t} )\frac{b}{2} = c_{r} \left( {1 + \lambda } \right)\frac{{\sqrt {AR \times S_{wing} } }}{2} \to c_{r} = \frac{2}{{\left( {1 + \lambda } \right)}}\sqrt {\frac{{S_{wing} }}{AR}}$$

Then, by substituting the value of c r , in Eq. (7), we get:

$$t_{wing} = t_{MAC} = 0.06MAC = 0.06 \times \frac{2}{3}\frac{2}{{\left( {1 + \lambda } \right)}}\sqrt {\frac{{S_{wing} }}{AR}} \left( {\frac{{1 + \lambda + \lambda^{2} }}{1 + \lambda }} \right) = 0.08\sqrt {\frac{{S_{wing} }}{AR}} \left( {\frac{{1 + \lambda + \lambda^{2} }}{{1 + 2\lambda + \lambda^{2} }}} \right)$$

If we consider a delta planform with λ > 0.375 and using Eq. (16), the tail arm can be expressed as:

$$l = c_{r} - x_{N} - 0.1\bar{c}$$

Substituting Eq. (15) into Eq. (6), and using the calculated formula for c r , one gets:

$$l = c_{r} - x_{N} - 0.1\bar{c} = c_{r} - \frac{{c_{r} }}{4} - \frac{b}{6}\frac{1 + 2\lambda }{1 + \lambda }\tan_{{\Phi_{0.25} }} - 0.1 \times \frac{2}{3}c_{r} \left( {\frac{{1 + \lambda + \lambda^{2} }}{1 + \lambda }} \right)$$

Using the previous expression and Fig. 7, tanΦ 0.25 can be written as:

$$\tan_{{\Phi_{0.25} }} = \frac{{c_{r} - 0.25c_{r} - (c_{t} - 0.25c_{t} )}}{b/2} = \frac{{0.75(c_{r} - c_{t} )}}{b/2} = \frac{{1.5(c_{r} - c_{t} )}}{b} = \frac{{1.5c_{r} (1 - \lambda )}}{b}$$

Substituting tanΦ 0.25 in the expression of l, one obtains:

$$l = c_{r} - \frac{{c_{r} }}{4} - \frac{b}{6}\frac{1 + 2\lambda }{1 + \lambda } \times \frac{{1.5c_{r} (1 - \lambda )}}{b} - 0.1 \times \frac{2}{3}c_{r} \left( {\frac{{1 + \lambda + \lambda^{2} }}{1 + \lambda }} \right)$$

The previous expression can be simplified to be:

$$l = c_{r} \left[ {0.75 - 0.25\left( {\frac{{1 + \lambda - 2\lambda^{2} }}{1 + \lambda }} \right) - \frac{0.2}{3}\left( {\frac{{1 + \lambda + \lambda^{2} }}{1 + \lambda }} \right)} \right]$$

Substituting c r by its expression, we have:

$$l = \frac{2}{{\left( {1 + \lambda } \right)}}\sqrt {\frac{{S_{wing} }}{AR}} \left[ {0.75 - 0.25\left( {\frac{{1 + \lambda - 2\lambda^{2} }}{1 + \lambda }} \right) - \frac{0.2}{3}\left( {\frac{{1 + \lambda + \lambda^{2} }}{1 + \lambda }} \right)} \right]$$

Simplifying the previous expression, one gets:

$$l = \sqrt {\frac{{S_{wing} }}{AR}} \frac{2}{{\left( {1 + \lambda } \right)}}\left[ {\frac{{2.25(1 + \lambda ) - 0.75(1 + \lambda - 2\lambda^{2} ) - 0.2(1 + \lambda + \lambda^{2} )}}{3(1 + \lambda )}} \right]$$

And then:

$$l = \left[ {\frac{{2.6(1 + \lambda + \lambda^{2} )}}{{3(1 + \lambda )^{2} \sqrt {AR} }}} \right]\sqrt {S_{wing} }$$

As for Eq. (71), we have:

$$W_{f} = 0.45\rho_{f} t_{f} \left( {c_{r} + 0.1\sqrt {AR \times S_{wing} } } \right)\sqrt {AR \times S_{wing} }$$

Substituting c r by its expression, we have:

$$W_{f} = 0.45\rho_{f} t_{f} \left( {\frac{2}{{\left( {1 + \lambda } \right)}}\sqrt {\frac{{S_{wing} }}{AR}} + 0.1\sqrt {AR \times S_{wing} } } \right)\sqrt {AR \times S_{wing} }$$

Then,

$$W_{f} = 0.45\rho_{f} t_{f} \left( {\frac{{2S_{wing} }}{{\left( {\lambda + 1} \right)}} + 0.1\left( {AR \times S_{wing} } \right)} \right)$$
(71)

According to Tables 11 and 14, for leading edge spar, we have:

$$W_{{LE{\text{-}}Spars}} = \frac{\pi }{4}\rho_{Ls} D_{Ls}^{2} \sqrt {AR \times S_{wing} }$$

Substituting the corresponding values for the density and the diameter of the carbon rod and aspect ratio, one obtains:

$$W_{{LE{\text{-}}Spars}} = \frac{\pi }{4}\rho_{Ls} D_{Ls}^{2} \sqrt {AR \times S_{wing} } = \frac{\pi }{4} \times 1400 \times 0.005^{2} \times \sqrt {3.85 \times S_{wing} } \approx 0.04\sqrt {S_{wing} }$$
$$W_{{Diagonal{\text{-}}Spars}} = \frac{\pi }{2}\rho_{ds} D_{ds}^{2} \sqrt {\frac{{AR \times S_{wing} }}{4} + c_{r}^{2} } = \frac{\pi }{2} \times 1400 \times 0.0025^{2} \sqrt {\frac{{3.85 \times S_{wing} }}{4} + c_{r}^{2} }$$
$$W_{{Diagonal{\text{-}}Spars}} \approx 0.014\sqrt {0.9625S_{wing} + c_{r}^{2} }$$
$$c_{r} = 0.35 \times b = 0.35\sqrt {AR \times S_{wing} } = 0.7\sqrt {S_{wing} }$$
$$W_{{Diagonal{\text{-}}Spars}} \approx 0.014\sqrt {0.9625S_{wing} + 0.49S_{wing} } \approx 0.02\sqrt {S_{wing} }$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassanalian, M., Abdelkefi, A. Methodologies for weight estimation of fixed and flapping wing micro air vehicles. Meccanica 52, 2047–2068 (2017). https://doi.org/10.1007/s11012-016-0568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11012-016-0568-y

Keywords

Navigation