Skip to main content
Log in

NMR-based metabolomics characterizes metabolic changes in different brain regions of streptozotocin-induced diabetic mice with cognitive decline

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Diabetes at advanced age increases rise of cognitive impairment, but its potential mechanisms are still far from being fully understood. In this study, we analyzed the metabolic alterations in six different brain regions between streptozotocin (STZ)-induced diabetic mice with cognitive decline (DM) and age-matched controls (CON) using a 1H NMR-based metabolomics approach, to explore potential metabolic mechanisms underlying diabetes-induced cognitive decline. The results show that DM mice had a peculiar metabolic phenotype in all brain regions, mainly involving increased lactate level, decreased choline and energy metabolism as well as disrupted astrocyte-neuron metabolism. Furthermore, these metabolic changes exhibited a brain region-specific pattern. Collectively, our results suggest that brain region-specific metabolic disorders may be responsible for diabetes-induced cognitive dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

T1D:

type 1 diabetes

CON:

normal mice

DM:

diabetes mellitus

STZ:

streptozotocin

MWM:

Morris water maze

Ala:

alanine

ADP:

adenosine diphosphate

AMP:

adenosine monophosphate

Asp:

aspartate

Cho:

choline

Cre:

creatine

Fum:

fumarate

GABA:

γ -aminobutyric acid

Gln:

glutamine

Glu:

glutamate

Gly:

glycine

IMP:

inosine monophosphate

Ino:

inosine

Lac:

lactate

Myo:

myo-inositol

NAA:

N-acetylaspartate

GPC:

glycerophosphorylcholine

Tau:

taurine

Cor:

cortex

Cer:

cerebellum

Hip:

hippocampus

Hyp:

hypothalamus

Mid:

midbrain

Str:

striatum

References

  • Akimoto H, Oshima S, Sugiyama T, Negishi A, Nemoto T, Kobayashi D (2019) Changes in brain metabolites related to stress resilience: Metabolomic analysis of the hippocampus in a rat model of depression. Behav Brain Res 359:342–352

    PubMed  CAS  Google Scholar 

  • Andersen JV, Nissen JD, Christensen SK, Markussen KH, Waagepetersen HS (2017) Impaired hippocampal glutamate and glutamine metabolism in the db/db mouse model of type 2 diabetes mellitus. Neural Plast 2017:1–9

    Google Scholar 

  • Azhir Z, Dehghanian F, Hojati Z (2018) Increased expression of microRNAs, miR-20a and miR-326 in PBMCs of patients with type 1 diabetes. Mol Biol Rep 45(6):1973–1980

    PubMed  CAS  Google Scholar 

  • Bakker FC, Klijn CJ, Jennekens-Schinkel A, van der Tweel I, van der Grond J, van Huffelen AC et al (2003) Cognitive impairment is related to cerebral lactate in patients with carotid artery occlusion and ipsilateral transient ischemic attacks. Stroke 34(6):1419–1424

    PubMed  CAS  Google Scholar 

  • Beetsch JW, Olson JE (1998) Taurine synthesis and cysteine metabolism in cultured rat astrocytes: effects of hyperosmotic exposure. Am J Physiol-Cell Physiol 274(4):866–874

    Google Scholar 

  • Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14(6):724–738

    PubMed  Google Scholar 

  • Blusztajn J, Slack B, Mellott T (2017) Neuroprotective actions of dietary choline. Nutrients 9(8):815

    PubMed Central  Google Scholar 

  • Bowery NG, Smart TG (2006) GABA and glycine as neurotransmitters: a brief history. Br J Pharmacol 147(S1):109–119

    Google Scholar 

  • Brands AMA, Biessels GJ, Haan EHFD, Kappelle LJ, Kessels RPC (2005) The effects of type 1 diabetes on cognitive performance: a meta-analysis. Diabetes Care 28:726–735

    PubMed  Google Scholar 

  • Burkart V, Wang ZQ, Jürgen R, Heller B, Kolb H (1999) Mice lacking the poly (ADP-ribose) polymerase gene are resistant to beta-cell destruction and diabetes development induced by streptozocin. Nat Med 5:314–319

    PubMed  CAS  Google Scholar 

  • Ceretta LB, Réus GZ, Rezin GT, Scaini G, Streck EL, Quevedo J (2010) Brain energy metabolism parameters in an animal model of diabetes. Metab Brain Dis 25:391–396

    PubMed  CAS  Google Scholar 

  • Chomova M, Balazova M, Muchova J (2017) Diabetes-induced abnormalities of mitochondrial function in rat brain cortex: the effect of n-3 fatty acid diet. Mol Cell Biochem 435:109–131

    PubMed  CAS  Google Scholar 

  • De Feyter HM, Mason GF, Shulman GI, Rothman DL, Petersen KF (2013) Increased brain lactate concentrations without increased lactate oxidation during hypoglycemia in type 1 diabetic individuals. Diabetes 62:3075–3080

    PubMed  PubMed Central  Google Scholar 

  • Duarte JM (2015) Metabolic alterations associated to brain dysfunction in diabetes. Aging Dis 6(5):304

    PubMed  PubMed Central  Google Scholar 

  • Flood JF, Mooradian AD, Morley JE (1990) Characteristics of learning and memory in streptozocin-induced diabetic mice. Diabetes 39(11):1391–1398

    PubMed  CAS  Google Scholar 

  • Gilmour G, Dix S, Fellini L, Gastambide F, Plath N, Steckler T et al (2012) NMDA receptors, cognition and schizophrenia–testing the validity of the NMDA receptor hypofunction hypothesis. Neuropharmacology 62:1401–1412

    PubMed  CAS  Google Scholar 

  • Gonzalez-Riano C, Garcia A, Barbas C (2016) Metabolomics studies in brain tissue: A review. J Pharm Biomed Anal 130:141–168

    PubMed  CAS  Google Scholar 

  • Hansen TM, Brock B, Juhl A, Drewes AM, Vorum H, Andersen CU et al (2019) Brain spectroscopy reveals that N-acetylaspartate is associated to peripheral sensorimotor neuropathy in type 1 diabetes. J Diabetes Complications 33:323–328

    PubMed  Google Scholar 

  • Harsing LG Jr, Matyus P (2013) Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: The role of synaptic and non-synaptic glycine transporters. Brain Res Bull 93:110–119

    PubMed  CAS  Google Scholar 

  • Hletala K, Harjutsalo V, Forsblom C, Groop PH, Flnndlane Study Group (2010) Age at onset and the risk of proliferative retinopathy in type 1 diabetes. Diabetes Care 33(6):1315–1319

    Google Scholar 

  • Kaddurah-Daouk R, Kristal BS, Weinshilboum RM (2008) Metabolomics: a global biochemical approach to drug response and disease. Ann Rev Pharmacol Toxicol 48:653–683

    CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lalande J, Halley H, Balayssac S, Gilard V, Dejean S, Martino R et al (2014) ) 1H NMR metabolomic signatures in five brain regions of the AβPPswe Tg2576 mouse model of Alzheimer’s disease at four ages. J Alzheimer’s Dis 39(1):121–143

    CAS  Google Scholar 

  • Lee J, Choi J, Wong GW, Wolfgang MJ (2016) Neurometabolic roles of ApoE and Ldl-R in mouse brain. J Bioenerg Biomembr 48(1):13–21

    PubMed  Google Scholar 

  • Lenzen S (2008) The mechanisms of alloxan-and streptozotocin-induced diabetes. Diabetologia 51(2):216–226

    PubMed  CAS  Google Scholar 

  • Liapi C, Kyriakaki A, Zarros A, Galanopoulou P, Al-Humadi H, Dontas I et al (2010) Choline-deprivation alters crucial brain enzyme activities in a rat model of diabetic encephalopathy. Metab Brain Dis 25:269–276

    PubMed  CAS  Google Scholar 

  • Liguori C, Stefani A, Sancesario G, Sancesario GM, Marciani MG, Pierantozzi M (2015) CSF lactate levels, τ proteins, cognitive decline: a dynamic relationship in Alzheimer’s disease. J Neurol Neurosur Psych 86(6):655–659

    CAS  Google Scholar 

  • Liu CC, Chen JL, Chang XR, Shen JC, Lian LY, Wang YD et al (2017) Comparative metabolomics study on therapeutic mechanism of electro-acupuncture and moxibustion on rats with chronic atrophic gastritis (CAG). Sci Rep 7(1):14362

    PubMed  PubMed Central  Google Scholar 

  • Ma RC (2018) Epidemiology of diabetes and diabetic complications in China. Diabetologia 61(6):1249–1260

    PubMed  Google Scholar 

  • MacNaught N, Holt P (2015) Type 1 diabetes and alcohol consumption. Nursing Stand 29(50):41

    Google Scholar 

  • Mikk ML, Heikkinen T, El-Amir MI, Kiviniemi M, Laine AP, Härkönen T et al (2017) The association of the HLA‐A* 24: 02, B* 39: 01 and B* 39: 06 alleles with type 1 diabetes is restricted to specific HLA‐DR/DQ haplotypes in Finns. Hla 89(4):215–224

    PubMed  CAS  Google Scholar 

  • Miyata S, Matsushima O, Hatton GI (1997) Taurine in rat posterior pituitary: localization in astrocytes and selective release by hypoosmotic stimulation. J Comp Neurol 381(4):513–523

    PubMed  CAS  Google Scholar 

  • Mora-Ortiz M, Ramos PN, Oregioni A, Claus SP (2019) NMR metabolomics identifies over 60 biomarkers associated with type ii diabetes impairment in db/db mice. Metabolomics 15:89

    PubMed  PubMed Central  Google Scholar 

  • Murata M, Takahashi A, Saito I, Kawanishi S (1999) Site-specific dna methylation and apoptosis: induction by diabetogenic streptozotocin. Biochem Pharmacol 57:881–887

    PubMed  CAS  Google Scholar 

  • Murfitt SA, Zaccone P, Wang X, Acharjee A, Sawyer Y, Koulman A et al (2018) Metabolomics and lipidomics study of mouse models of type 1 diabetes highlights divergent metabolism in purine and tryptophan metabolism prior to disease onset. J Proteome Res 17(3):946–960

    PubMed  CAS  Google Scholar 

  • Nagayach A, Patro N, Patro I (2014) Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis 29(3):747–761

    PubMed  CAS  Google Scholar 

  • Nobuo S (1994) Cytochrome P450 changes in rats with streptozocin-induced diabetes. Int J Biochem 26:1261–1268

    Google Scholar 

  • Palazzo E, Luongo L, Guida F, Marabese I, Romano R, Iannotta M et al (2016) D-Aspartate drinking solution alleviates pain and cognitive impairment in neuropathic mice. Amino Acids 48(7):1553–1567

    PubMed  CAS  Google Scholar 

  • Pereira FC, Rolo MR, Marques E, Mendes VM, Ribeiro CF, Ali SF et al (2008) Acute increase of the glutamate–glutamine cycling in discrete brain areas after administration of a single dose of amphetamine. Ann NY Acad Sci 1139(1):212–221

    PubMed  CAS  Google Scholar 

  • Pugliese M, Carrasco JL, Andrade C, Mas E, Mascort J, Mahy N (2005) Severe cognitive impairment correlates with higher cerebrospinal fluid levels of lactate and pyruvate in a canine model of senile dementia. Prog Neuro-Psychopharmacol Biol Psych 29(4):603–610

    CAS  Google Scholar 

  • Savorani F, Tomasi G, Engelsen SB (2010) icoshift: A versatile tool for the rapid alignment of 1D NMR spectra. J Magn Reson 202(2):190–202

    PubMed  CAS  Google Scholar 

  • Schurr A, Payne RS, Miller JJ, Rigor BM (1997) Brain lactate is an obligatory aerobic energy substrate for functional recovery after hypoxia: further in vitro validation. J Neurochem 69(1):423–426

    PubMed  CAS  Google Scholar 

  • Shemesh N, Rosenberg JT, Dumez JN, Grant SC, Frydman L (2017) Distinguishing neuronal from astrocytic subcellular microstructures using in vivo Double Diffusion Encoded 1H MRS at 21.1 T. PloS One 12(10):e0185232

    PubMed  PubMed Central  Google Scholar 

  • Shingo AS, Kanabayashi T, Murase T, Kito S (2012) Cognitive decline in STZ-3V rats is largely due to dysfunctional insulin signalling through the dentate gyrus. Behav Brain Res 229(2):378–383

    PubMed  CAS  Google Scholar 

  • Stern DM, Yan SD, Yan SF, Schmidt AM (2002) Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Res Rev 1(1):1–15

    PubMed  CAS  Google Scholar 

  • Thielen JW, Gancheva S, Hong D, Rohani Rankouhi S, Chen B, Apostolopoulou M et al (2019) Higher GABA concentration in the medial prefrontal cortex of Type 2 diabetes patients is associated with episodic memory dysfunction. Hum Brain Mapp 40:4287–4295

    PubMed  PubMed Central  Google Scholar 

  • Van Bussel FC, Backes WH, Hofman PA, Puts NA, Edden RA, Van Boxtel MP et al (2016) Increased GABA concentrations in type 2 diabetes mellitus are related to lower cognitive functioning. Medicine 95:e4803

    PubMed  PubMed Central  Google Scholar 

  • Van Duinkerken E, Schoonheim MM, Sanz-Arigita EJ, IJzerman RG, Moll AC, Snoek FJ et al (2012) Resting-state brain networks in type 1 diabetic patients with and without microangiopathy and their relation to cognitive functions and disease variables. Diabetes 61:1814–1821

    PubMed  PubMed Central  Google Scholar 

  • Wessels AM, Rombouts SA, Remijnse PL, Boom Y, Scheltens P, Barkhof F et al (2007) Cognitive performance in type 1 diabetes patients is associated with cerebral white matter volume. Diabetologia 50:1763–1769

    PubMed  CAS  Google Scholar 

  • Wishart DS, Feunang YD, Marcu A, Guo AC, Liang K, Vázquez-Fresno R et al (2017) HMDB 4.0: the human metabolome database for 2018. Nucleic Acids Res 46:D608–D617

    PubMed Central  Google Scholar 

  • Yagihashi S, Mizukami H, Sugimoto K (2011) Mechanism of diabetic neuropathy: where are we now and where to go? J Diabetes Invest 2(1):18–32

    CAS  Google Scholar 

  • Yao H, Sadoshima S, Nishimura Y, Fujii K, Oshima M, Ishitsuka T et al (1989) Cerebrospinal fluid lactate in patients with diabetes mellitus and hypoglycaemic coma. J Neurol Neurosur Psychiat 52:372–375

    CAS  Google Scholar 

  • Zafra F, Ibáñez I, Bartolomé-Martín D, Piniella D, Arribas-Blázquez M, Giménez C (2017) Glycine transporters and its coupling with NMDA receptors. Adv Neurobiol 16:55–83

    PubMed  Google Scholar 

  • Zhao L, Dong M, Ren M, Li C, Zheng H, Gao H (2018) Metabolomic analysis identifies lactate as an important pathogenic factor in diabetes-associated cognitive decline rats. Mol Cell Proteom 17(12):2335–2346

    CAS  Google Scholar 

  • Zheng H, Lin Q, Wang D, Xu P, Zhao L, Hu W et al (2017a) NMR-based metabolomics reveals brain region-specific metabolic alterations in streptozotocin-induced diabetic rats with cognitive dysfunction. Metab Brain Dis 32(2):585–593

    PubMed  CAS  Google Scholar 

  • Zheng H, Zheng Y, Wang D, Cai A, Lin Q, Zhao L et al (2017c) Analysis of neuron–astrocyte metabolic cooperation in the brain of db/db mice with cognitive decline using 13C NMR spectroscopy. J Cereb Blood Flow Metab 37(1):332–343

    PubMed  CAS  Google Scholar 

  • Zheng H, Zheng Y, Zhao L, Chen M, Bai G, Hu Y et al (2017b) Cognitive decline in type 2 diabetic db/db mice may be associated with brain region-specific metabolic disorders. BBA-Mol Basis Dis 1863(1):266–273

    CAS  Google Scholar 

  • Zheng H, Zhou Q, Du Y, Li C, Xu P, Lin L et al (2018) The hypothalamus as the primary brain region of metabolic abnormalities in APP/PS1 transgenic mouse model of Alzheimer’s disease. BBA-Mol Basis Dis 1864(1):263–273

    CAS  Google Scholar 

  • Zhu YB, Gao W, Zhang Y, Jia F, Zhang HL, Liu YZ et al (2016) Astrocyte-derived phosphatidic acid promotes dendritic branching. Sci Rep 6:21096

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Nos.: 21605115 and 81771386), Health Foundation for Creative Talents in Zhejiang Province (2016), Project Foundation for the College Young and Middle-aged Academic Leader of Zhejiang Province (2017) and Wenzhou Bureau of Science and Technology (No.: Y20150087).

Author information

Authors and Affiliations

Authors

Contributions

YJY, HZ and HCG contributed to the experimental design. TTZ, KF and NZX contributed to animal experiments. TTZ, KF, JCL and CWY contributed to the sample collection and NMR metabolomic analysis. HZ and HCG contributed to the data analysis, result interpretation and writing. All authors have read, revised and approved the final manuscript.

Corresponding authors

Correspondence to Hongchang Gao or Yunjun Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Zheng, H., Fan, K. et al. NMR-based metabolomics characterizes metabolic changes in different brain regions of streptozotocin-induced diabetic mice with cognitive decline. Metab Brain Dis 35, 1165–1173 (2020). https://doi.org/10.1007/s11011-020-00598-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-020-00598-z

Keywords

Navigation