Skip to main content
Log in

Age-dependent changes of cerebral copper metabolism in Atp7b −/− knockout mouse model of Wilson’s disease by [64Cu]CuCl2-PET/CT

  • Original Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

Abstract

Copper is a nutritional metal required for brain development and function. Wilson’s disease (WD), or hepatolenticular degeneration, is an inherited human copper metabolism disorder caused by a mutation of the ATP7B gene. Many WD patients present with variable neurological and psychiatric symptoms, which may be related to neurodegeneration secondary to copper metabolism imbalance. The objective of this study was to explore the feasibility and use of copper-64 chloride ([64C]CuCl2) as a tracer for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD using an Atp7b −/− knockout mouse model of WD and positron emission tomography/computed tomography (PET/CT) imaging. Continuing from our recent study of biodistribution and radiation dosimetry of [64C]CuCl2 in Atp7b −/− knockout mice, PET quantitative analysis revealed low 64Cu radioactivity in the brains of Atp7b −/− knockout mice at 7th weeks of age, compared with 64Cu radioactivity in the brains of age- and gender-matched wild type C57BL/6 mice, at 24 h (h) post intravenous injection of [64C]CuCl2 as a tracer. Furthermore, age-dependent increase of 64Cu radioactivity was detected in the brains of Atp7b −/− knockout mice from the 13th to 21th weeks of age, based on the data derived from a longitudinal [64C]CuCl2-PET/CT study of Atp7b −/− knockout mice with orally administered [64Cu]CuCl2 as a tracer. The findings of this study support clinical use of [64Cu]CuCl2-PET/CT imaging as a tool for noninvasive assessment of age-dependent changes of cerebral copper metabolism in WD patients presenting with variable neurological and psychiatric symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ala A, Walker AP, Ashkan K, Dooley JS, Schilsky ML (2007) Wilson's disease. Lancet 369:397–408

    Article  CAS  PubMed  Google Scholar 

  • Buiakova OI, Xu J, Lutsenko S, Zeitlin S, Das K, Das S et al (1999) Null mutation of the murine ATP7B (Wilson disease) Gene results in intracellular copper accumulation and late-onset hepatic nodular transformation. Hum Mol Genet 8:1665–1671

    Article  CAS  PubMed  Google Scholar 

  • Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337

    Article  CAS  PubMed  Google Scholar 

  • Capasso E, Durzu S, Piras S, Zandieh S, Knoll P, Haug A, Hacker M, Meleddu C, Mirzaei S (2015) Role of 64CuCl2 PET/CT in staging of prostate cancer. Ann Nucl Med 29(6):482–488

    Article  CAS  PubMed  Google Scholar 

  • Choi BS, Zheng W (2009) Copper transport to the brain by the blood-brain barrier and blood-CSF barrier. Brain Res 1248:14–21

    Article  CAS  PubMed  Google Scholar 

  • Chuang N, Mori S, Yamamoto A, Jiang H, Ye X, Xu X, Richards LJ, Nathans J, Miller MI, Toga AW, Sidman RL, Zhang J (2011) An MRI-based atlas and database of the developing mouse brain. NeuroImage 54:80–89

    Article  PubMed  Google Scholar 

  • Dong Y, Shi SS, Chen S, Ni W, Zhu M, Wu ZY (2015) The discrepancy between the absence of copper deposition and the presence of neuronal damage in the brain of Atp7b −/− mice. Metallomics 7:283–288

    Article  CAS  PubMed  Google Scholar 

  • Faa G, Lisci M, Caria MP, Ambu R, Sciot R, Nurchi VM, Silvagni R, Diaz A, Crisponi G, Silvagni SS (2001) Brain copper, iron, magnesium, zinc, calcium, sulfur and phosphorus storage in Wilson's disease. J Trace Elem Med Biol 15:155–160

    Article  CAS  PubMed  Google Scholar 

  • Fueger BJ, Czernin J, Hildebrandt I, Tran C, Halpern BS, Stout D, Phelps ME, Weber WA (2006) Impact of animal handling on the results of 18F-FDG PET studies in mice. J Nucl Med 47:999–1006

    CAS  PubMed  Google Scholar 

  • Gray LW, Peng F, Molloy SA, Pendyala VS, Muchenditsi A, Muzik O, Lee J, Kaplan JH, Lutsenko S (2012) Urinary copper elevation in a mouse model of Wilson's disease is a regulated process to specifically decrease the hepatic copper load. PLoS One 7:e38327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkins RA, Mazziotta JC, Phelps ME (1987) Wilson's disease studied with FDG and positron emission tomography. Neurology 37(11):1707–1711

  • Hermann W (2014) Morphological and functional imaging in neurological and non-neurological Wilson's patients. Ann N Y Acad Sci 1315:24–29

    Article  CAS  PubMed  Google Scholar 

  • Hermann W, Barthel H, Hesse S, Grahmann F, Kühn HJ, Wagner A, Villmann T (2002) Comparison of clinical types of Wilson's disease and glucose metabolism in extrapyramidal motor brain regions. J Neurol 249(7):896–901

    Article  CAS  PubMed  Google Scholar 

  • Litwin T, Gromadzka G, Szpak GM, Jabłonka-Salach K, Bulska E, Członkowska A (2013) Brain metal accumulation in Wilson's disease. J Neurol Sci 329:55–58

    Article  CAS  PubMed  Google Scholar 

  • Lorincz MT (2010) Neurologic Wilson's disease. Ann N Y Acad Sci 1184:173–187

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko S (2008) Atp7b −/− mice as a model for studies of Wilson’s disease. Biochem Soc Trans 36:1233–1238

    Article  CAS  PubMed  Google Scholar 

  • Lutsenko S (2014) Modifying factors and phenotypic diversity in Wilson’s disease. Ann N Y Acad Sci 1315:56–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutsenko S, Bhattacharjee A, Hubbard AL (2010) Copper handling machinery of the brain. Metallomics 2:596–608

    Article  CAS  PubMed  Google Scholar 

  • Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337

    Article  CAS  PubMed  Google Scholar 

  • Manrique-Arias JC, Carrasco-Hernández J, Reyes PG, Ávila-Rodríguez MA (2016) Biodistribution in rats and estimates of doses to humans from 64CuCl2, a potential theranostic tracer. Appl Radiat Isot 115:18–22

    Article  CAS  PubMed  Google Scholar 

  • Nomura S, Nozaki S, Hamazaki T, Takeda T, Ninomiya E, Kudo S, Hayashinak E, Wada Y, Hiroki T, Fujisawa C, Kodama H, Shintaku H, Watanabe Y (2014) PET imaging analysis with 64Cu in disulfiram treatment for aberrant copper biodistribution in Menkes disease mouse model. J Nucl Med 55:845–851

    Article  CAS  PubMed  Google Scholar 

  • Olivares M, Uauy R (1996) Copper as an essential nutrient. Am J Clin Nutr 63:791S–796S

    CAS  PubMed  Google Scholar 

  • Peng F, Lutsenko S, Sun X, Muzik O (2012a) Positron emission tomography of copper metabolism in the Atp7b −/− knock-out mouse model of Wilson's disease. Mol Imaging Biol 14:70–78

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng F, Lutsenko S, Sun X, Muzik O (2012b) Imaging copper metabolism imbalance in Atp7b −/− knockout mouse model of Wilson's disease with PET-CT and orally administered 64CuCl2. Mol Imaging Biol 14:600–607

    Article  PubMed  Google Scholar 

  • Peng F, Muzik O, Gatson J, Kernie SG, Diaz-Arrastia R (2015) Assessment of traumatic brain injury by increased 64Cu uptake on 64CuCl2 PET/CT. J Nucl Med 56:1252–1257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przybyłkowski A, Gromadzka G, Wawer A, Bulska E, Jabłonka-Salach K, Grygorowicz T, Schnejder-Pachołek A, Członkowski A (2013) Neurochemical and behavioral characteristics of toxic milk mice: an animal model of Wilson's disease. Neurochem Res 38:2037–2045

    Article  PubMed  PubMed Central  Google Scholar 

  • Roberts EA, Schilsky ML (2008) Diagnosis and treatment of Wilson disease: an update. Hepatology 47:2089–2111

    Article  CAS  PubMed  Google Scholar 

  • Som P, Atkins HL, Bandoypadhyay D, Fowler JS, MacGregor RR, Matsui K, Oster ZH, Sacker DF, Shlue CY, Turner H, Wan CN, Wolf AP, Zabinski SV (1980) A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J Nucl Med 21:670–675

    CAS  PubMed  Google Scholar 

  • Tanzi RE, Petrukhin K, Chernov I, Pellequer JL, Wasco W, Ross B, Romano DM, Parano E, Pavone L, Brzustowicz LM, Devoto M, Peppercorn J, Bush AI, Sternlieb I, Pirastu M, Gusella JF, Evgrafov O, Penchaszadeh GK, Honig B, Edelman IS, Soares MB, Scheinberg IH, Gilliam TC (1993) The Wilson disease gene is a copper transporting ATPase with homology to the Menkes disease gene. Nat Genet 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Terwel D, Löschmann YN, Schmidt HH, Schöler HR, Cantz T, Heneka MT (2011) Neuroinflammatory and behavioural changes in the Atp7b mutant mouse model of Wilson's disease. J Neurochem 118:105–112

    Article  CAS  PubMed  Google Scholar 

  • Toyama H, Ichise M, Liow JS, Vines DC, Seneca NM, Modell KJ, Seidel J, Green MV, Innis RB (2004) Evaluation of anesthesia effects on [18F]FDG uptake in mouse brain and heart using small animal PET. Nucl Med Biol 31(2):251–256

    Article  CAS  PubMed  Google Scholar 

  • Uauy R, Olivares M, Gonzalez M (1998) Essentiality of copper in humans. Am J Clin Nutr 67:952S–959S

    CAS  PubMed  Google Scholar 

  • Wang LM, Becker JS, Wu Q, Oliveira MF, Bozza FA, Schwager AL, Hoffman JM, Morton KA (2010) Bioimaging of copper alterations in the aging mouse brain by autoradiography, laser ablation inductively coupled plasma mass spectrometry and immunohistochemistry. Metallomics 2:348–353

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Heiny ME, Gitlin JD (1993) Isolation and characterization of a human liver cDNA as a candidate gene for Wilson disease. Biochem Biophys Res Commun 197:271–277

    Article  CAS  PubMed  Google Scholar 

  • Zhou B, Gitschier J (1997) hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A 94:7481–7486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou XX, Li XH, Qin H, Li GD, Huang HW, Liang YY, Liang XL, Pu XY (2016) Diffusion tensor imaging of the extracorticospinal network in the brains of patients with Wilson disease. J Neurol Sci 362:292–298

    Article  PubMed  Google Scholar 

  • Zhu M, Dong Y, Ni W, Wu ZY (2015) Defective roles of ATP7B missense mutations in cellular copper tolerance and copper excretion. Mol Cell Neurosci 67:31–36

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Xiankai Sun for use of the ICP-MS instrument. This research project was partially supported by the National Institutes of Health (1R21NS074394-01A1 and 1R21AG047953-01 to F.P). The production of [64Cu]CuCl2 at Washington University School of Medicine was supported by NIH/NCI grant R24 CA86307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangyu Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. The authors alone are responsible for the content and writing of the paper

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, F., Xi, Y., Pascual, J.M. et al. Age-dependent changes of cerebral copper metabolism in Atp7b −/− knockout mouse model of Wilson’s disease by [64Cu]CuCl2-PET/CT. Metab Brain Dis 32, 717–726 (2017). https://doi.org/10.1007/s11011-017-9956-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11011-017-9956-9

Keywords

Navigation